Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-06-08T01:52:27.766Z Has data issue: false hasContentIssue false

Towards an isotopic modeling of the illitization process based on data of illite-type fundamental particles from mixed-layer illite-smectite

Published online by Cambridge University Press:  01 January 2024

Norbert Clauer*
Affiliation:
Centre de Géochimie de la Surface (CNRS/ULP), 1 rue Blessig, 67084 Strasbourg, France
*
*E-mail address of corresponding author: nclauer@illite.u-strasbg.fr

Abstract

Burial-induced and hydrothermal-related illitization in bentonites and in sandstones can be modeled on the basis of isotopic studies of fundamental particles separated from mixed-layer illitesmectite. The model envisages different reaction rates and durations relative to the varied impacts of temperature, considering that the water:rock ratio also has an influence. The different pathways for illitization are suggested on the basis of the K-Ar, Rb-Sr and δ18O compositions of previously studied materials.

New information is provided on why fundamental particles separated from mixed-layer illite-smectite in shales yield K-Ar age data that are systematically greater than the ages of the fundamental particles from associated bentonites and/or sandstones, and greater than the reported stratigraphic ages. The study of pure authigenic, recent to present-day smectite from Pacific sediments shows that (1) those collected from active hydrothermal vents have 40Ar/36Ar ratios identical to that of the atmosphere, and (2) those of mud sediments have 40Ar/36Ar ratios above the atmospheric value, indicating addition of 40Ar not generated in situ by radioactive decay. A preliminary but detailed analysis of the noble-gas (Ar, Xe, Kr) contents of authigenic smectite-rich size fractions from Pacific deep-sea red clays suggests trapping of these gases by smectite. Therefore, the results point to the fact that fundamental particles can incorporate excess 40Ar into their structure when nucleating in restricted to closed systems, such as shales. This excess 40Ar, which represents radiogenic 40Ar released from nearby altered silicates, might be temporarily adsorbed at the surface of the rock pore spaces and is therefore available for incorporation in nucleating and growing particles.

Type
Research Article
Copyright
Copyright © 2006, The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Altaner, S.P. Whitney, G. and Aronson, J.L., (1984) Model for K-bentonite formation: Evidence from zoned K-bentonites in the disturbed beld, Montana Geology 12 412415 10.1130/0091-7613(1984)12<412:MFKFEF>2.0.CO;2.2.0.CO;2>CrossRefGoogle Scholar
Altaner, S.P. and Ylagan, R.F., (1997) Comparison of structural models of mixed-layer illite/smectite and reaction mechanisms of smectite illitization Clays and Clay Minerals 45 517533 10.1346/CCMN.1997.0450404.CrossRefGoogle Scholar
Aronson, J.L. and Hower, J., (1976) Mechanism of burial metamorphism of argillaceous sediments: 2. Radiogenic argon evidence Geological Society of America Bulletin 87 738743 10.1130/0016-7606(1976)87<738:MOBMOA>2.0.CO;2.2.0.CO;2>CrossRefGoogle Scholar
Berger, G. Lacharpagne, J.C. Velde, B. Beaufort, D. and Lanson, B., (1997) Kinetic constraints on illitization reactions and the effects of organic diagenesis in sandstone/shale sequences Applied Geochemistry 12 2335 10.1016/S0883-2927(96)00051-0.CrossRefGoogle Scholar
Bonhomme, M. Thuizat, R. Pinault, Y. Clauer, N. Wendling, R. and Winkler, R., (1975) Méthode de datation potassium-argon. Appareillage et technique France University of Strasbourg 3 53 pp.Google Scholar
Buatier, M. Honnorez, J. and Ehret, G., (1989) Fe-smectite-glauconite transition in hydrothermal green clays from the Galapagos spreading center Clays and Clay Minerals 37 532541 10.1346/CCMN.1989.0370605.CrossRefGoogle Scholar
Burley, S.D. and Flisch, M., (1989) K-Ar chronology and the origin of illite in the Piper and Tartan fields, Outer Moray Firth, U.K., North Sea Clay Minerals 24 285315 10.1180/claymin.1989.024.2.11.CrossRefGoogle Scholar
Chaudhuri, S. Środoń, J. and Clauer, N., (1999) K-Ar dating of illitic fractions of Estonian ‘Blue Clay’ treated with alkylammonium cations Clays and Clay Minerals 47 96102 10.1346/CCMN.1999.0470110.CrossRefGoogle Scholar
Clauer, N., (1982) Strontium isotopes of Tertiary phillipsites from the southern Pacific: Timing of the geochemical evolution Journal of Sedimentary Petrology 52 10031009.Google Scholar
Clauer, N. and Chaudhuri, S., (1995) Clays in Crustal Environments. Isotope Dating and Tracing Berlin, Heidelberg Springer Verlag 10.1007/978-3-642-79085-0 358 pp.CrossRefGoogle Scholar
Clauer, N. and Chaudhuri, S., (1996) Inter-basinal comparison of the diagenetic evolution of illite/smectite minerals in buried shales on the basis of K-Ar systematics Clays and Clay Minerals 44 818824 10.1346/CCMN.1996.0440613.CrossRefGoogle Scholar
Clauer, N. Hoffert, M. and Karpoff, A.M., (1982) The Rb-Sr system as an index of origin and diagenetic evolution of southern Pacific red clays Geochimica et Cosmochimica Acta 46 26592664 10.1016/0016-7037(82)90384-2.CrossRefGoogle Scholar
Clauer, N. Cocker, J.D. Chaudhuri, S., Houseknecht, D.W. and Edward, D., (1992) Isotopic dating of diagenetic illites in reservoir sandstones, Influence of the investigator effect Origin, Diagenesis and Petrophysics of Clay Minerals in Sandstones Tulsa, Oklahoma SEPM 512 10.2110/pec.92.47.0005.CrossRefGoogle Scholar
Clauer, N. Środoń, J. Franců, J. and Šuchá, V., (1997) K-Ar dating of illite fundamental particles separated from illite/smectite Clay Minerals 32 181196 10.1180/claymin.1997.032.2.02.CrossRefGoogle Scholar
Clauer, N. Rinckenbach, T. Weber, F. Sommer, F. Chaudhuri, S. and O’Neil, J.R., (1999) Diagenetic evolution of clay minerals in oil-bearing Neogene sandstones and associated shales from Mahakam Delta Basin (Kalimantan, Indonesia) American Association of Petroleum Geology Bulletin 83 6287.Google Scholar
Clauer, N. Liewig, N. Pierret, M.C. and Toulkeridis, T., (2003) Crystallization conditions of fundamental particles from mixed-layer illite-smectite of bentonites based on isotopic data (K-Ar, Rb-Sr and δ18O) Clays and Clay Minerals 51 664674 10.1346/CCMN.2003.0510609.CrossRefGoogle Scholar
Clauer, N. Rousset, D. and Środoń, J., (2004) Modeled shale and sandstone burial diagenesis based on the K-Ar systematics of illite-type fundamental particles Clays and Clay Minerals 52 576588 10.1346/CCMN.2004.0520504.CrossRefGoogle Scholar
Dunoyer de Segonzac, G. (1969) Les minéraux argileux dans la diagenèse. Passage au métamorphisme. Sciences Géologiques Mémoire, Strasbourg, 29, 320 pp.Google Scholar
Eberl, D.D. and Hower, J., (1976) Kinetics of illite formation Geological Society of America Bulletin 87 13261330 10.1130/0016-7606(1976)87<1326:KOIF>2.0.CO;2.2.0.CO;2>CrossRefGoogle Scholar
Eberl, D.D. and Środoń, J., (1988) Ostwald ripening and interparticle diffraction effects of illite crystals American Mineralogist 73 13351345.Google Scholar
Eberl, D.D. Drits, V.A. and Środoń, J., (1998) Deducing growth mechanisms for minerals from the shapes of crystal size distributions American Journal of Science 298 499533 10.2475/ajs.298.6.499.CrossRefGoogle Scholar
Ehrenberg, S.N. and Nadeau, P.H., (1989) Formation of diagenetic illite in sandstones of the Garn Formation, Haltenbanken area, Mid-Norwegian continental shelf Clay Minerals 24 233253 10.1180/claymin.1989.024.2.09.CrossRefGoogle Scholar
Elliott, W.C. and Matisoff, G., (1996) Evaluation of kinetic models for the smectite to illite transformation Clays and Clay Minerals 44 7787 10.1346/CCMN.1996.0440107.CrossRefGoogle Scholar
Elliott, W.C. Aronson, J.L. Matisoff, G. and Gautier, D.L., (1991) Kinetics of the smectite to illite transformation in the Denver Basin; clay mineral, K-Ar data and mathematical model results American Association of Petroleum Geology Bulletin 75 436462.Google Scholar
Gilg, H.A. Weber, B. Kasbohm, J. and Frei, R., (2003) Isotope geochemistry and origin of illite-smectite and kaolinite from the Seilitz and Kemmlitz kaolin deposits, Saxony, Germany Clay Minerals 38 95112 10.1180/0009855033810081.CrossRefGoogle Scholar
Glasmann, J.R. Larter, S. Briedis, N.A. and Lundegard, P.D., (1989) Shale diagenesis in the Bergen High area, North Sea Clays and Clay Minerals 37 97112 10.1346/CCMN.1989.0370201.CrossRefGoogle Scholar
Glasmann, J.R. Lundegard, P.D. Clark, R.A. Penny, B.K. and Collins, I.D., (1989) Geochemical evidence for the history of diagenesis and fluid migrations: Brent sandstones, Heather field, North Sea Clay Minerals 24 255284 10.1180/claymin.1989.024.2.10.CrossRefGoogle Scholar
Hoffert, M. Karpoff, A.M. Clauer, N. Schaaf, A. Courtois, C. and Pautot, G., (1978) Néoformations et altérations dans trois faciès volcano-sédimentaires du Pacifique Sud Oceanologica Acta 1 187202.Google Scholar
Honnorez, J. Von Herzen, R.P. Barret, T.J. Becker, K. Bender, M.L. Bender, P.E. Borella, P.E. Hubberten, H.W. Jones, S.C. Karato, S.I. Laverne, C. Levi, S. Migdisov, A.A. Moorby, S.A. and Schrader, E.L., (1981) Hydrothermal mounds and young ocean crust of the Galapagos: Preliminary Deep Sea Drilling results, leg 70 Geological Society of America Bulletin 92 457472 10.1130/0016-7606(1981)92<457:HMAYOC>2.0.CO;2.2.0.CO;2>CrossRefGoogle Scholar
Honnorez, J. Karpoff, A.M. and Trauth-Badaut, D. (1983) et al. , Sedimentology, mineralogy and geochemistry of green clay samples from the Galapagos hydrothermal mounds, Hole 506, 506C and 507D Deep Sea Drilling Project Leg 70 Report of the Deep Sea Drilling Project 70 221224.Google Scholar
Honty, M. Uhlík, P. Šuchá, V. Čaplovičá, M. Franců, J. Clauer, N. and Biron, A., (2004) Smectite-to-illite alteration in salt-bearing bentonites (the East Slovak Basin) Clays and Clay Minerals 52 533551 10.1346/CCMN.2004.0520502.CrossRefGoogle Scholar
Horseman, S.T., Cuss, R.J., Reeves, H.J., Noy, D., Clauer, N., Warr, L.N., Duplay, J., Cuisinier, O., Masrouri, F. and Liewig, N. (in press) Potential for self-healing of fractures in plastic clays and argillaceous rocks under repository conditions. Nuclear Energy Agency, NEA-CC-3- version 1.0 Draft, 351 pp.Google Scholar
Hower, J. Eslinger, E.V. Hower, M. and Perry, E.A., (1976) Mechanism of burial metamorphism of argillaceous sediments: 1. Mineralogical and chemical evidence Geological Society of America Bulletin 87 725737 10.1130/0016-7606(1976)87<725:MOBMOA>2.0.CO;2.2.0.CO;2>CrossRefGoogle Scholar
Huang, W.L. Longo, J.M. and Pevear, D.R., (1993) An experimentally derived kinetic model for smectite-to-illite conversion and its use as a geothermometer Clays and Clay Minerals 41 162177 10.1346/CCMN.1993.0410205.CrossRefGoogle Scholar
Hurley, P.M. Cormier, R.F. Hower, J. Fairbairn, H.W. and Pinson, W.H., (1960) Reliability of glauconite for age measurements by K-Ar and Rb-Sr methods American Association of Petroleum Geology Bulletin 4/1 793808.Google Scholar
Inoue, A. Kohyama, N. and Kitagawa, R., (1987) Chemical and morphological evidence for the conversion of smectite to illite Clays and Clay Minerals 35 111120 10.1346/CCMN.1987.0350203.CrossRefGoogle Scholar
Jennings, S. and Thompson, G.R., (1986) Diagenesis of Plio-Pleistocene sediments of the Colorado River delta, southern California Journal of Sedimentary Petrology 56 8998.Google Scholar
Kübler, B., Paquet, H. and Clauer, N., (1997) Concomitant alteration of clay minerals and organic matter during burial diagenesis Soils and Sediments Berlin Springer Verlag 327362 10.1007/978-3-642-60525-3_15.CrossRefGoogle Scholar
Lerman, A. and Clauer, N., (2005) Losses of radiogenic 40Ar in the fine-clay size fractions of sediments Clays and Clay Minerals 53 233248 10.1346/CCMN.2005.0530304.CrossRefGoogle Scholar
Mossmann, J.R., (1991) K-Ar dating of authigenic illite-smectite clay material: application to complex mixtures of mixed-layer assemblages Clay Minerals 26 189198 10.1180/claymin.1991.026.2.04.CrossRefGoogle Scholar
Nadeau, P.H. Wilson, M.J. McHardy, W.J. and Tait, J.M., (1984) Interstratified clays as fundamental particles Science 225 923925 10.1126/science.225.4665.923.CrossRefGoogle ScholarPubMed
Nier, A.O., (1950) A redetermination of the relative abundances of the isotopes of carbon, nitrogen, oxygen, argon and potassium Physics Review 77 789793 10.1103/PhysRev.77.789.CrossRefGoogle Scholar
Ozima, M. and Podosek, F.A., (2002) Noble Gas Geochemistry 2nd Cambridge, UK Cambridge University Press 286 pp.Google Scholar
Pevear, D.R. (1992) Illite age analysis: A new tool for basin thermal history analysis. Pp. 12511254 in: Proceedings of the 7thInternational Symposium on Water-Rock Interactions, (Kharaka, Y.K. and A.S. editors) Park City, Utah, USA.Google Scholar
Pollastro, R.M., (1993) Considerations and applications of the illite/smectite geothermometer in hydrocarbon-bearing rocks of Miocene to Mississippian age Clays and Clay Minerals 41 119133 10.1346/CCMN.1993.0410202.CrossRefGoogle Scholar
Porcelli, D.P. Ballentine, C.J. and Wieler, R., (2002) Noble Gases Washington, D.C. Mineralogical Society of America, and the Geochemical Society 844 pp.CrossRefGoogle Scholar
Pytte, A. Reynolds, R.C. Jr., Naeser, N.D. and McCulloh, T.H., (1988) The thermal transformation of smectite to illite Thermal History of Sedimentary Basins Berlin Springer Verlag 133140.Google Scholar
Rousset, D. and Clauer, N., (2003) Discrete clay diagenesis in a very low-permeable sequence constrained by an isotopic (K-Ar and Rb-Sr) study Contributions to Mineralogy and Petrology 145 182198 10.1007/s00410-003-0441-6.CrossRefGoogle Scholar
Schultz, L. Weber, H.W. and Begemann, F., (1991) Noble gases in H-chondrites and potential differences between Antarctic and non-Antarctic meteorites Geochimca et Cosmochimica Acta 55 5966 10.1016/0016-7037(91)90399-P.CrossRefGoogle Scholar
Środoń, J., (1995) Reconstruction of maximum paleotemperatures at present erosional surface of the Upper Silesia Basin, based on the composition of illite/smectite in shales Studia Geologica Polonica 108 920.Google Scholar
Srodon, J. and Clauer, N., (2001) Diagenetic history of Lower Palaeozoic sediments in Pomerania (northern Poland) traced across the Teisseyre-Tornquist tectonic zone using mixed-layer illite-smectite Clay Minerals 36 1527 10.1180/000985501547321.CrossRefGoogle Scholar
Šuchá, V. Kraus, I. Gerthofferova, H. Petes, J. and Serekova, M., (1993) Smectite to illite conversion in bentonites and shales of the East Slovak Basin Clay Minerals 28 4353 10.1180/claymin.1993.028.2.06.CrossRefGoogle Scholar
Velde, B., (1985) Clay Minerals. A Physico-chemical Explanation of their Occurrence Elsevier, Amsterdam.Google Scholar
Whitney, G. and Velde, B., (1993) Changes in particle morphology during illitization — an experimental study Clays and Clay Minerals 41 209218 10.1346/CCMN.1993.0410209.CrossRefGoogle Scholar
Williams, D.L. Von Herzen, R.P. Sclate, J.G. and Anderson, R.N., (1974) The Galapagos Spreading Center: Lithospheric cooling and hydrothermal circulation Journal of the Royal Astronomical Society 38 587608 10.1111/j.1365-246X.1974.tb05431.x.CrossRefGoogle Scholar
Wilkinson, M. and Haszeldine, R.S., (2002) Fibrous illite in oilfield sandstones — a nucleation kinetic theory of growth Terra Nova 14 5660 10.1046/j.1365-3121.2002.00388.x.CrossRefGoogle Scholar