Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-06-12T20:53:34.924Z Has data issue: false hasContentIssue false

X-ray Diffraction and Thermal Analysis of Bauxite Ore-Processing Waste (Red Mud) Exchanged with Arsenate and Phosphate

Published online by Cambridge University Press:  01 January 2024

Paola Castaldi*
Affiliation:
Dipartimento di Scienze Ambientali Agrarie e Biotecnologie Agro-Alimentari, Sez. Chimica Agraria ed Ambientale, University of Sassari, Viale Italia 39, 07100 Sassari, Italy
Margherita Silvetti
Affiliation:
Dipartimento di Scienze Ambientali Agrarie e Biotecnologie Agro-Alimentari, Sez. Chimica Agraria ed Ambientale, University of Sassari, Viale Italia 39, 07100 Sassari, Italy
Stefano Enzo
Affiliation:
Dipartimento di Chimica, University of Sassari, Via Vienna 2, 07100 Sassari, Italy
Salvatore Deiana
Affiliation:
Dipartimento di Scienze Ambientali Agrarie e Biotecnologie Agro-Alimentari, Sez. Chimica Agraria ed Ambientale, University of Sassari, Viale Italia 39, 07100 Sassari, Italy
*
* E-mail address of corresponding author: castaldi@uniss.it

Abstract

The use of waste materials from mineral ore processing has much potential for immobilizing pollutants such as arsenic (As) in natural soils and waters. The purpose of the present study was to investigate red mud (RM, a finely textured bauxite-ore residue) as a sequestering agent for arsenate and phosphate, including characterization of the types of surface complexes formed. The mineralogical and structural changes occurring in RM were investigated after exchange with arsenate [As(V)-RM] and phosphate [P(V)-RM] anions at pH 4.0, 7.0, and 10.0. Eight different phases were present in the untreated red mud (RMnt), though 80 wt.% of the crystalline phase consisted of sodalite, hematite, gibbsite, and boehmite. The X-ray diffraction (XRD) data for As(V)-RM revealed an anion-promoted dissolution of the gibbsite, suggesting that this phase was the most active for As(V) sequestration. In addition, the lattice parameters of cancrinite were different in As(V)-RM at pH 7.0 and 10.0 from those in RMnt. The changes may be related to the incorporation of arsenate in the cancrinite cages. X-ray diffraction patterns of P(V)-RM at pH 4.0 and 7.0 revealed the dissolution of sodalite, hematite, and gibbsite, and the formation of a novel phase, berlinite [(α,β)AlPO4]. The new phases detected through XRD and thermal (TG/DTG) analysis in P(V)-RM probably originated through an initial phosphate-promoted dissolution of some RM phases, followed by a precipitation reaction between the phosphate and Al/Fe ions. The results obtained suggest that phosphate and arsenate, though with different reactivities, were strongly bound to some RM phases, such as gibbsite, cancrinite, sodalite, and hematite through mechanisms such as chemical sorption and coprecipitation reactions. The knowledge acquired will be helpful in selecting alternative materials such as red muds, which currently pose critical economic and environmental challenges related to their disposal, for the decontamination of soils and waters polluted with As.

Type
Article
Copyright
Copyright © The Clay Minerals Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Antelo, J. Avena, M. Fiol, S. López, R. and Arce, F., 2005 Effects of pH and ionic strength on the adsorption of phosphate and arsenate at the goethite–water interface Journal of Colloid and Interface Science 285 476486 10.1016/j.jcis.2004.12.032.CrossRefGoogle ScholarPubMed
Budroni, G. Cocco, G. Jiang, J Z Carturan, G. and Enzo, S., 2000 X-ray powder diffraction and Moessbauer study of red mud residue from alumina production Materials Science Forum 343 27.Google Scholar
Castaldi, P. Silvetti, M. Santona, L. Enzo, S. and Melis, P., 2008 XRD, FT-IR, and thermal analysis of bauxite oreprocessing waste (red mud) exchanged with heavy metals Clays and Clay Minerals 56 461469 10.1346/CCMN.2008.0560407.CrossRefGoogle Scholar
Castaldi, P. Melis, P. Silvetti, M. Deiana, P. and Garau, G., 2009 Influence of pea and wheat growth on Pb, Cd, and Zn mobility and soil biological status in a polluted amended soil Geoderma 151 241248 10.1016/j.geoderma.2009.04.009.CrossRefGoogle Scholar
Castaldi, P. Silvetti, M. Enzo, S. and Melis, P., 2010 Study of sorption processes and FT-IR analysis of arsenate sorbed onto red muds (a bauxite ore processing waste) Journal of Hazardous Materials 175 172178 10.1016/j.jhazmat.2009.09.145.CrossRefGoogle ScholarPubMed
Castaldi, P. Silvetti, M. Garau, G. and Deiana, S., 2010 Influence of the pH on the accumulation of phosphate by red mud (a bauxite ore processing waste) Journal of Hazardous Materials 182 266272 10.1016/j.jhazmat.2010.06.025.CrossRefGoogle Scholar
Cengeloglu, Y. Tor, A. Arslan, G. Ersoz, M. and Gezgin, S., 2007 Removal of boron from aqueous solution by using neutralized red mud Journal of Hazardous Materials 142 412417 10.1016/j.jhazmat.2006.08.037.CrossRefGoogle ScholarPubMed
Chen, D. He, L. and Shang, S., 2003 Study on aluminium phosphate binder and related Al2O3-SiC ceramic Materials Science and Engineering A–Structural Materials Properties Microstructure and Processing 348 2935 10.1016/S0921-5093(02)00643-3.CrossRefGoogle Scholar
Ciardelli, M.C. Xu, H. and Sahai, N., 2008 Role of Fe(II), phosphate, silicate, sulfate, and carbonate in arsenic uptake by coprecipitation in synthetic and natural groundwater Water Research 42 615624 10.1016/j.watres.2007.08.011.CrossRefGoogle ScholarPubMed
Garau, G. Castaldi, P. Santona, L. Deiana, P. and Melis, P., 2007 Influence of red mud, zeolite and lime on heavy metal immobilization, culturable heterotrophic microbial populations and enzyme activities in a contaminated soil Geoderma 142 4757 10.1016/j.geoderma.2007.07.011.CrossRefGoogle Scholar
Garau, G. Silvetti, M. Deiana, S. Deiana, P. and Castaldi, P., 2011 Long term influence of red mud on As mobility and soil physico-chemical and microbial parameters in a polluted sub-acidic soil Journal of Hazardous Materials 185 12411248 10.1016/j.jhazmat.2010.10.037.CrossRefGoogle Scholar
Genç-Fuhrman, H., Bregnhoj, H., and McConchie, D. (2005) Arsenate removal from water using sand-red mud columns. Water Research, 13, 2944–2954.Google Scholar
Goldberg, S. and Johnston, C.T., 2001 Mechanisms of arsenic adsorption on amorphous oxides evaluated using macroscopic measurements, vibrational spectroscopy, and surface complexation modeling Journal of Colloid and Interface Science 234 204216 10.1006/jcis.2000.7295.CrossRefGoogle ScholarPubMed
Gray, C.W. Dunham, S.J. Dennis, P.G. Zhao, F.J. and McGrath, S.P., 2006 Field evaluation of in situ remediation of a heavy metal contaminated soil using lime and red-mud Environmental Pollution 142 530539 10.1016/j.envpol.2005.10.017.CrossRefGoogle ScholarPubMed
Guo, G. and Chen, Y., 1996 Thermal analysis and infrared measurements of a lead-barium-aluminium phosphate glass Journal of Non-Crystalline Solids 201 262–66 10.1016/0022-3093(96)00397-3.CrossRefGoogle Scholar
Huang, W. Wang, S. Zhu, Z. Li, L. Yao, X. Rudolph, V. and Haghseresht, F., 2008 Phosphate removal from wastewater using red mud Journal of Hazardous Materials 158 3542 10.1016/j.jhazmat.2008.01.061.CrossRefGoogle ScholarPubMed
Linares, C.F. Sánchez, S. Urbina de Navarro, C. Rodríguez, K. and Goldwasser, M.R., 2005 Study of cancrinite-type zeolites as possible antiacid agents Microporous and Mesoporous Materials 77 215221 10.1016/j.micromeso.2004.08.030.CrossRefGoogle Scholar
Liu, Y. Lin, C. and Wu, Y., 2007 Characterization of red mud derived from a combined Bayer. Process and bauxite calcination method Journal of Hazardous Materials 146 255261 10.1016/j.jhazmat.2006.12.015.CrossRefGoogle ScholarPubMed
Lombi, E.n.z.o. Hamon, Rebecca E. Wieshammer, Gerlinde McLaughlin, Mike J. and McGrath, Steve P., 2004 Assessment of the Use of Industrial By-Products to Remediate a Copper- and Arsenic-Contaminated Soil Journal of Environment Quality 33 3 902 10.2134/jeq2004.0902.CrossRefGoogle ScholarPubMed
Luengo, C. Brigante, M. and Avena, M., 2007 Adsorption kinetics of phosphate and arsenate on goethite. A comparative study Journal of Colloid and Interface Science 311 354360 10.1016/j.jcis.2007.03.027.CrossRefGoogle ScholarPubMed
Luxton, T.P. Eick, M.J. and Rimstidt, D.J., 2008 The role of silicate in the adsorption/desorption of arsenite on goethite Chemical Geology 252 125135 10.1016/j.chemgeo.2008.01.022.CrossRefGoogle Scholar
Manning, B.A. and Goldberg, S., 1996 Modeling competitive adsorption of arsenate with phosphate and molybdate on oxide sminerals Soil Science Society of America Journal 60 121131 10.2136/sssaj1996.03615995006000010020x.CrossRefGoogle Scholar
Mon, J. Deng, Y. Flury, M. and Harsh, J.B., 2005 Cesium incorporation and diffusion in cancrinite, sodalite, zeolite and allophone Microporous and Mesoporous Materials 86 277286 10.1016/j.micromeso.2005.07.030.CrossRefGoogle Scholar
Palmer, S.J. Soisonard, A. and Frost, R.L., 2009 Determination of the mechanism(s) for the inclusion of arsenate, vanadate, or molybdate anions into hydrotalcites with variable cationic ratio Journal of Colloid and Interface Science 329 404409 10.1016/j.jcis.2008.09.065.CrossRefGoogle ScholarPubMed
Pontikes, Y. Nikolopoulos, P. and Angelopoulos, G.N., 2007 Thermal behaviour of clay mixtures with bauxite residue for the production of heavy-clay ceramics Journal of the European Ceramic Society 27 16451649 10.1016/j.jeurceramsoc.2006.05.067.CrossRefGoogle Scholar
Pradhan, J. Das, S.N. and Thakur, R.S., 1999 Adsorption of exavalent chromium from aqueous solution by using activated red mud Journal of Colloid and Interface Science 217 137141 10.1006/jcis.1999.6288.CrossRefGoogle Scholar
Rojsajjakul, T. Veravong, S. Tumcharern, G. Seangprasertkij-Magee, R. and Tuntulani, T., 1997 Synthesis and characterisation of polyaza crown ether derivatives of calix arene and their role as anion receptors Tetrahedron 53 46694680 10.1016/S0040-4020(97)00136-1.CrossRefGoogle Scholar
Ruixia, L. Jinlong, G. and Hongxiao, T., 2002 Adsorption of fluoride, phosphate, and arsenate ions on a new type of ion exchange fiber Journal of Colloid and Interface Science 248 268274 10.1006/jcis.2002.8260.CrossRefGoogle ScholarPubMed
Scaccia, S. Carewska, M D B ^A and Prosini, P.P., 2002 Thermoanalytical investigation of iron phosphate obtained by spontaneous precipitation from aqueous solutions Thermochimica Acta 383 145152 10.1016/S0040-6031(01)00686-4.CrossRefGoogle Scholar
Scaccia, S. Carewska, M D B ^A and Prosini, P.P., 2003 Thermoanalytical investigation of nanoscrystalline iron(II) phosphate obtain by spontaneous precipitation from aqueous solutions Thermochimica Acta 397 135–41 10.1016/S0040-6031(02)00292-7.CrossRefGoogle Scholar
Sglavo, V.M. Campostrini, R. Maurina, S. Carturan, G. Monagheddu, M. Budroni, G. and Cocco, G., 2000 Bauxite red mud in the ceramic industry. Part 1: thermal behaviour Journal of the European Ceramic Society 20 235244 10.1016/S0955-2219(99)00088-6.CrossRefGoogle Scholar
Smiljanić, S. Smičiklas, I. Perić-Grujić, A. Lončar, B. and Mitrić, M., 2010 Rinsed and thermally treated red mud sorbents for aqueous Ni2+ ions Chemical Engineering Journal 162 7583 10.1016/j.cej.2010.04.062.CrossRefGoogle Scholar
Tanaka, H. and Chikazawa, M., 2000 Modification of amorphous aluminum phosphate with alkyl phosphates Materials Research Bulletin 35 7584 10.1016/S0025-5408(00)00186-0.CrossRefGoogle Scholar
Tor, A. Danaoglu, N. Arslan, G. and Cengeloglu, Y., 2009 Removal of fluoride from water by using granular red mud: batch and column studies Journal of Hazardous Materials 164 271278 10.1016/j.jhazmat.2008.08.011.CrossRefGoogle ScholarPubMed
Violante, A. Pucci, M. Cozzolino, V. Zhu, J. and Pigna, M., 2009 Sorption/desorption of arsenate on/from Mg–Al layered double hydroxides: Influence of phosphate Journal of Colloid and Interface Science 333 6370 10.1016/j.jcis.2009.01.004.CrossRefGoogle ScholarPubMed
Wang, S. and Mulligan, C.N., 2008 Speciation and surface structure of inorganic arsenic in solid phases: A review Environment International 34 867879 10.1016/j.envint.2007.11.005.CrossRefGoogle ScholarPubMed
Wang, S. Ang, H.M. and Tad, M.O., 2008 Novel applications of red mud as coagulant, adsorbent and catalyst for environmentally benign processes Chemosphere 72 16211635 10.1016/j.chemosphere.2008.05.013.CrossRefGoogle ScholarPubMed
Young, R.A., 1993 The Rietveld Method Oxford, UK Oxford University Press.CrossRefGoogle Scholar
Zhang, H. and Selim, H.M., 2008 Competitive sorptiondesorption kinetics of arsenate and phosphate in soils Soil Science 173 312 10.1097/ss.0b013e31815ce750.CrossRefGoogle Scholar
Zhang, S. Liu, C. Luan, Z. Peng, X. Ren, H. and Wang, J., 2008 Arsenate removal from aqueous solutions using modified red mud Journal of Hazardous Materials 152 486492 10.1016/j.jhazmat.2007.07.031.CrossRefGoogle ScholarPubMed
Zhao, Y. Wang, J. Luan, Z. Peng, X. Liang, Z. and Shi, L., 2009 Removal of phosphate from aqueous solution by red mud using a factorial design Journal of Hazardous Materials 165 11931199 10.1016/j.jhazmat.2008.10.114.CrossRefGoogle ScholarPubMed