Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-06-05T16:26:44.067Z Has data issue: false hasContentIssue false

Adjunctive cariprazine for major depressive disorder: a systematic review and meta-analysis

Published online by Cambridge University Press:  01 April 2024

Hartej Gill*
Affiliation:
Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada Institute of Medical Science, University of Toronto, Toronto, ON, Canada
David C.J. Chen-Li
Affiliation:
Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada Institute of Medical Science, University of Toronto, Toronto, ON, Canada
Sipan Haikazian
Affiliation:
Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada Institute of Medical Science, University of Toronto, Toronto, ON, Canada
Sam Seyedin
Affiliation:
Department of Psychiatry, University of Toronto, Toronto, ON, Canada
Roger S. McIntyre
Affiliation:
Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada Institute of Medical Science, University of Toronto, Toronto, ON, Canada Canadian Rapid Treatment Center of Excellence, Mississauga, ON, Canada Department of Pharmacology, University of Toronto, Toronto, ON, Canada Department of Psychiatry, University of Toronto, Toronto, ON, Canada Brain and Cognition Discovery Foundation, Toronto, ON, Canada
Rodrigo B. Mansur
Affiliation:
Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada Department of Psychiatry, University of Toronto, Toronto, ON, Canada
Joshua D. DiVincenzo
Affiliation:
Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada Brain and Cognition Discovery Foundation, Toronto, ON, Canada
Lee Phan
Affiliation:
Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada Brain and Cognition Discovery Foundation, Toronto, ON, Canada
Joshua D. Rosenblat
Affiliation:
Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada Institute of Medical Science, University of Toronto, Toronto, ON, Canada Canadian Rapid Treatment Center of Excellence, Mississauga, ON, Canada Department of Pharmacology, University of Toronto, Toronto, ON, Canada Department of Psychiatry, University of Toronto, Toronto, ON, Canada
*
Corresponding author: Hartej Gill; Email: hartej.gill@mail.utoronto.ca

Abstract

Converging evidence has suggested that treatment augmentation with a second-generation atypical antipsychotic (SGA) may improve treatment outcomes in major depressive disorder (MDD) patients after an incomplete response to a first-line antidepressant. Cariprazine is a recently approved SGA for MDD augmentation. Herein, we evaluate both continuous (ie, change in depressive symptom severity scores over time) and categorical (ie, remission and response rates) outcomes. Following a full-text review, four randomized controlled trials (RCTs) were included in our meta-analysis, while five studies were included for a qualitative review. Risk ratios (RRs) were calculated for all included randomized controlled studies to determine the relative response and remission rates of cariprazine compared to placebo augmentation. The RR for all-cause dropout was also determined as a proxy for overall acceptability. Two studies found a statistically significant treatment response using cariprazine augmentation. One study observed depressive symptom remission for cariprazine compared to placebo. Our random-effects model revealed moderate antidepressant effects of cariprazine, with a standardized mean difference (SMD) in Montgomery–Åsberg Depression Rating Scale (MADRS) scores of −1.79 (95% CI): −2.89, −0.69). Our pooled response RR and remission RR were calculated as 1.21 (95% CI: 1.05, 1.39, P=0.008) and 0.99 (95% CI: 0.84, 1.17, P=0.91), respectively. The RR for response was statistically significant (P<0.05). However, the RR for remission was not statistically significant. The findings from our meta-analysis include a variable magnitude of effects. Evidence suggests cariprazine may be an effective treatment for MDD; however, further results are needed to clarify this relation.

Type
Review
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

H.G., D.C.J.C-L., and S.H. authors are co-first authors.

References

Association & American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders; 2013. doi: 10.1176/appi.books.9780890425596.CrossRefGoogle Scholar
Halaris, A. Inflammation-associated co-morbidity between depression and cardiovascular disease. Curr Top Behav Neurosci.. 2017;31:4570.CrossRefGoogle ScholarPubMed
Mathers, CD, Loncar, D. Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med. 2006;3(11):e442.CrossRefGoogle ScholarPubMed
Kennedy, SH, Lam, RW, McIntyre, RS, et al. Canadian Network for Mood and Anxiety Treatments (CANMAT) 2016 clinical guidelines for the management of adults with major depressive disorder: section 3. Pharmacological treatments. Can J Psychiatry. 2016;61(9):540560.CrossRefGoogle Scholar
Baune, BT, Miller, R, McAfoose, J, et al. The role of cognitive impairment in general functioning in major depression. Psychiatry Res. 2010;176(2–3):183189.CrossRefGoogle ScholarPubMed
Rush, AJ. STAR* D: what have we learned? Am J Psychiatry. 2007;164(2):201204.CrossRefGoogle ScholarPubMed
Mohamed, S, Johnson, GR, Chen, P, et al. Effect of antidepressant switching vs augmentation on remission among patients with major depressive disorder unresponsive to antidepressant treatment: the VAST-D randomized clinical trial. JAMA. 2017;318(2):132145.CrossRefGoogle ScholarPubMed
Santaguida, PL, MacQueen, G, Keshavarz, H, Levine, M, Beyene, J, Raina, P. Treatment for Depression after Unsatisfactory Response to SSRIs. Rockville, MD, US: Agency for Healthcare Research and Quality; 2012.Google ScholarPubMed
Caldiroli, A, Capuzzi, E, Tagliabue, I, et al. Augmentative pharmacological strategies in treatment-resistant major depression: a comprehensive review. Int J Mol Sci. 2021;22(23): 137. doi:10.3390/ijms222313070.CrossRefGoogle ScholarPubMed
Kato, M, Chang, C-M. Augmentation treatments with second-generation antipsychotics to antidepressants in treatment-resistant depression. CNS Drugs. 2013;27(Suppl 1):S11S19.CrossRefGoogle ScholarPubMed
Leggio, GM, Salomone, S, Bucolo, C, et al. Dopamine D3 receptor as a new pharmacological target for the treatment of depression. Eur J Pharmacol. 2013;719(1):2533.CrossRefGoogle ScholarPubMed
Carnicella, S, Drui, G, Boulet, S, et al. Implication of dopamine D3 receptor activation in the reversion of Parkinson’s disease-related motivational deficits. Transl. Psychiatry. 2014;4(6):e401e401. 10.1038/tp.2014.43.CrossRefGoogle ScholarPubMed
Mansur, RB, Subramaniapillai, M, Zuckerman, H, et al. Effort-based decision-making is affected by overweight/obesity in major depressive disorder. J Affect Disord. 2019;256:221227.CrossRefGoogle ScholarPubMed
Lacroix, LP, Hows, MEP, Shah, AJ, Hagan, JJ, Heidbreder, CA. Selective antagonism at dopamine D3 receptors enhances monoaminergic and cholinergic neurotransmission in the rat anterior cingulate cortex. Neuropsychopharmacology. 2003;28(5):839849.CrossRefGoogle ScholarPubMed
Ragguett, R-M, McIntyre, RS. Cariprazine for the treatment of bipolar depression: a review. Exp Rev Neurother. 2019;19(4):317323.CrossRefGoogle ScholarPubMed
Strakowski, SM, Adler, CM, Almeida, J, et al. The functional neuroanatomy of bipolar disorder: a consensus model. Bipolar Disord. 2012;14(4):313325.CrossRefGoogle ScholarPubMed
Kishimoto, T, Hagi, K, Kurokawa, S, Kane, JM, Correll, CU. Efficacy and safety/tolerability of antipsychotics in the treatment of adult patients with major depressive disorder: a systematic review and meta-analysis. Psychol Med. 2023;53(9):40644082.CrossRefGoogle ScholarPubMed
Nuñez, NA, Joseph, B, Pahwa, M, et al. Augmentation strategies for treatment resistant major depression: a systematic review and network meta-analysis. J Affect Disord. 2022;302:385400.CrossRefGoogle ScholarPubMed
Yan, Y, Yang, X, Wang, M, Chen, B, Yin, L, Ma, X. Efficacy and acceptability of second-generation antipsychotics with antidepressants in unipolar depression augmentation: a systematic review and network meta-analysis. Psychol Med. 2022;52(12):22242231.CrossRefGoogle ScholarPubMed
Moher, D, Liberati, A, Tetzlaff, J, Altman, DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ. 2009; 339:b2535. doi:10.1136/bmj.b2535.CrossRefGoogle Scholar
RoB 2: A Revised Cochrane Risk-of-Bias Tool for Randomized Trials ; 2011. https://methods.cochrane.org/bias/resources/rob-2-revised-cochrane-risk-bias-tool-randomized-trials. Accessed August 28, 2019.Google Scholar
Sterne, JAC, Savović, J, Page, MJ, et al. RoB 2: a revised tool for assessing risk of bias in randomised trials [Review of RoB 2: a revised tool for assessing risk of bias in randomised trials]. BMJ. 2019;366:l4898.CrossRefGoogle ScholarPubMed
Vieta, E, Earley, WR, Burgess, MV, et al. Long-term safety and tolerability of cariprazine as adjunctive therapy in major depressive disorder. Int Clin Psychopharmacol. 2019;34(2):7683.CrossRefGoogle ScholarPubMed
Durgam, S, Earley, W, Guo, H, et al. Efficacy and safety of adjunctive cariprazine in inadequate responders to antidepressants: a randomized, double-blind, placebo-controlled study in adult patients with major depressive disorder. J Clin Psychiatry. 2016;77(3):371378.CrossRefGoogle ScholarPubMed
Earley, WR, Guo, H, Németh, G, Harsányi, J, Thase, ME. Cariprazine augmentation to antidepressant therapy in major depressive disorder: results of a randomized, double-blind, placebo-controlled trial. Psychopharmacol Bull. 2018;48(4):6280.Google ScholarPubMed
Fava, M, Durgam, S, Earley, W, et al. Efficacy of adjunctive low-dose cariprazine in major depressive disorder: a randomized, double-blind, placebo-controlled trial. Int Clin Psychopharmacol. 2018;33(6):312321.CrossRefGoogle ScholarPubMed
Sachs, GS, Yeung, PP, Rekeda, L, Khan, A, Adams, JL, Fava, M. Adjunctive cariprazine for the treatment of patients with major depressive disorder: a randomized, double-blind, placebo-controlled phase 3 study. Am J Psychiatry. 2023;180(3):241251.CrossRefGoogle ScholarPubMed
Durgam, S, Gommoll, C, Migliore, R, Chen, C, Chang, CT, Aguirre, M, Thase, ME. Relapse prevention in adults with major depressive disorder treated with vilazodone: a randomized, double-blind, placebo-controlled trial. Int Clin Psychopharmacol. 2018;33(6):304311. doi: 10.1097/YIC.0000000000000236.CrossRefGoogle ScholarPubMed
Papakostas, GI, Fava, M. Does the probability of receiving placebo influence clinical trial outcome? A meta-regression of double-blind, randomized clinical trials in MDD. Eur Neuropsychopharmacol. 2009;19(1):3440.CrossRefGoogle ScholarPubMed
Wang, S-M, Han, C, Lee, S-J, et al. Second generation antipsychotics in the treatment of major depressive disorder: an update. Chonnam Med J. 2016;52(3):159172.CrossRefGoogle ScholarPubMed
Nelson, JC, Rahman, Z, Laubmeier, KK, et al. Efficacy of adjunctive aripiprazole in patients with major depressive disorder whose symptoms worsened with antidepressant monotherapy. CNS Spectr. 2014;19(6):528534.CrossRefGoogle ScholarPubMed
Papakostas, GI, Vitolo, OV, Ishak, WW, et al. A 12-week, randomized, double-blind, placebo-controlled, sequential parallel comparison trial of ziprasidone as monotherapy for major depressive disorder. J Clin Psychiatry. 2012;73(12):15411547.CrossRefGoogle ScholarPubMed
Meyers, BS, Flint, AJ, Rothschild, AJ, et al. A double-blind randomized controlled trial of olanzapine plus sertraline vs olanzapine plus placebo for psychotic depression: the study of pharmacotherapy of psychotic depression (STOP-PD). Arch Gen Psychiatry. 2009;66(8):838847.CrossRefGoogle Scholar
Papp, M, Gruca, P, Lasoń-Tyburkiewicz, M, Adham, N, Kiss, B, Gyertyán, I. Attenuation of anhedonia by cariprazine in the chronic mild stress model of depression. Behav Pharmacol. 2014;25(5–6):567574.CrossRefGoogle ScholarPubMed
Citrome, L. Cariprazine for acute and maintenance treatment of adults with schizophrenia: an evidence-based review and place in therapy. Neuropsychiatr Dis Treat. 2018;14:25632577.CrossRefGoogle ScholarPubMed
Stahl, SM, Laredo, S, Morrissette, DA. Cariprazine as a treatment across the bipolar I spectrum from depression to mania: mechanism of action and review of clinical data. Ther Adv Psychopharmacol. 2020;10:2045125320905752.CrossRefGoogle ScholarPubMed
Calabrese, JR, Sanchez, R, Jin, N, et al. The safety and tolerability of aripiprazole once-monthly as maintenance treatment for bipolar I disorder: a double-blind, placebo-controlled, randomized withdrawal study. J Affect Disord. 2018;241:425432.CrossRefGoogle ScholarPubMed
Lieberman, JA. Dopamine partial agonists. CNS Drugs. 2004;18(4):251267.CrossRefGoogle ScholarPubMed
Delcourte, S, Ashby, CR, Rovera, R, et al. The novel atypical antipsychotic cariprazine demonstrates dopamine D2 receptor-dependent partial agonist actions on rat mesencephalic dopamine neuronal activity. CNS Neurosci Ther. 2018;24(12):11291139.CrossRefGoogle ScholarPubMed
Kiss, B, Horváth, A, Némethy, Z, et al. Cariprazine (RGH-188), a dopamine D(3) receptor-preferring, D(3)/D(2) dopamine receptor antagonist-partial agonist antipsychotic candidate: in vitro and neurochemical profile. J Pharmacol Exp Ther. 2010;333(1):328340.CrossRefGoogle Scholar
Celada, P, Puig, M, Amargós-Bosch, M, Adell, A, Artigas, F. The therapeutic role of 5-HT1A and 5-HT2A receptors in depression. J Psychiatry Neurosci. 2004;29(4):252265.Google ScholarPubMed
Eison, AS, Mullins, UL. Regulation of central 5-HT2A receptors: a review of in vivo studies. Behav Brain Res. 1996;73(1–2):177181.CrossRefGoogle ScholarPubMed
Papakostas, GI, Fava, M, Baer, L, et al. Ziprasidone augmentation of escitalopram for major depressive disorder: efficacy results from a randomized, double-blind, placebo-controlled study. Am J Psychiatry. 2015;172(12):12511258.CrossRefGoogle ScholarPubMed
Duric, V, Banasr, M, Franklin, T, et al. Cariprazine exhibits anxiolytic and dopamine D3 receptor-dependent antidepressant effects in the chronic stress model. Int J Neuropsychopharmacol. 2017;20(10):788796.CrossRefGoogle ScholarPubMed
Kiss, B, Némethy, Z, Fazekas, K, et al. Preclinical pharmacodynamic and pharmacokinetic characterization of the major metabolites of cariprazine. Drug Des Devel Ther. 2019;13:32293248.CrossRefGoogle ScholarPubMed
Periclou, A, Phillips, L, Ghahramani, P, Kapás, M, Carrothers, T, Khariton, T. Population pharmacokinetics of cariprazine and its major metabolites. Eur J Drug Metab Pharmacokinet. 2021;46(1):5369.CrossRefGoogle ScholarPubMed
Zhou, X, Keitner, GI, Qin, B, et al. Atypical antipsychotic augmentation for treatment-resistant depression: a systematic review and network meta-analysis. Int J Neuropsychopharmacol. 2015;18(11):yv060.CrossRefGoogle ScholarPubMed