Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-06-02T21:16:50.863Z Has data issue: false hasContentIssue false

Substance P Antagonists: Meet the New Drugs, Same as the Old Drugs? Insights From Transgenic Animal Models

Published online by Cambridge University Press:  07 November 2014

Abstract

Antidepressants that primarily target the reuptake of monoamines have been highly successful treatments. However, therapies with these drugs still have several drawbacks, namely severe side effects, delays in the onset of action, and a significant percentage of non-responders. Recently, non-peptidic antagonists of the neurokinin 1 receptor, or substance P antagonists, have emerged as a novel class of drugs with antidepressant efficacy that is comparable to current drugs, but a potentially reduced side effect profile. This review summarizes the pre-clinical evidence derived from pharmacological and transgenic animal studies that suggests an important role for the substance P/neurokinin 1 system in anxiety and depression. Also, potential mechanisms by which substance P antagonists may produce their therapeutic effects are discussed.

Type
Review Article
Copyright
Copyright © Cambridge University Press 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Kramer, MS, Cutler, N, Feighner, J, et al.Distinct mechanism for antidepressant activity by blockade of central substance P receptors. Science. 1998;281:16401645.CrossRefGoogle ScholarPubMed
2.Ranga, K, Krishnan, R. Clinical experience with substance P receptor (NK1) antagonists in depression. J Clin Psychiatry. 2002;63(suppl 11):2529.Google ScholarPubMed
3.Von Euler, US, Gaddum, JH. An unidentified depressor substance in certain tissue extracts. J Physiol (Lond). 1931;72:7487.CrossRefGoogle Scholar
4.Chang, MM, Leeman, SE. Isolation of a sialogogic peptide from bovine hypothalamic tissue and its characterization as substance P. J Biol Chem. 1970;245:47844790.CrossRefGoogle ScholarPubMed
5.Regoli, D, Boudon, A, Fauchere, JL. Receptors and antagonists for substance P and related peptides. Pharmacol Rev. 1994;46:551599.Google ScholarPubMed
6.Massi, M, Panocka, I, de Caro, G. The psychopharmacology of tachykinin NK-3 receptors in laboratory animals. Peptides. 2000;21:15971609.CrossRefGoogle ScholarPubMed
7.Dam, TV, Escher, E, Quirion, R. Evidence for the existence of three classes of neurokinin receptors in brain. Differential ontogeny of neurokinin-1, neurokinin-2 and neurokinin-3 binding sites in rat cerebral cortex. Brain Res. 1988;453:372376.CrossRefGoogle ScholarPubMed
8.Stout, SC, Owens, MJ, Nemeroff, CB. Neurokinin(1) receptor antagonists as potential antidepressants. Annu Rev Pharmacol Toxicol. 2001;41:877906.CrossRefGoogle ScholarPubMed
9.De Felipe, C, Herrero, JF, O'Brien, JA, et al.Altered nociception, analgesia and aggression in mice lacking the receptor for substance P. Nature. 1998;392:394397.CrossRefGoogle ScholarPubMed
10.Saria, A. The tachykinin NK1 receptor in the brain: pharmacology and putative functions. Eur J Pharmacol. 1999;375:5160.CrossRefGoogle ScholarPubMed
11.Yip, J, Chahl, LA. Distribution of Fos-like immunoreactivity in guinea-pig brain following administration of the neurokinin-1 receptor agonist, [SAR9, MET(O2)11] substance P. Neuroscience. 1999;94:663673.CrossRefGoogle ScholarPubMed
12.Rupniak, NM, Carlson, EC, Harrison, T, et al.Pharmacological blockade or genetic deletion of substance P (NK(1)) receptors attenuates neonatal vocalisation in guinea-pigs and mice. Neuropharmacology. 2000;39:14131421.CrossRefGoogle Scholar
13.Teixeira, RM, Santos, AR, Ribeiro, SJ, et al.Effects of central administration of tachykinin receptor agonists and antagonists on plus-maze behavior in mice. Eur J Pharmacol. 1996;311:714.CrossRefGoogle ScholarPubMed
14.Krase, W, Koch, M, Schnitzler, HU. Substance P is involved in the sensitization of the acoustic startle response by footshocks in rats. Behav Brain Res. 1994;63:8188.CrossRefGoogle ScholarPubMed
15.Rupniak, NM, Kramer, MS. Discovery of the antidepressant and anti-emetic efficacy of substance P receptor (NK1) antagonists. Trends Pharmacol Sci. 1999;20:485490.CrossRefGoogle ScholarPubMed
16.Rupniak, NM, Carlson, EJ, Webb, JK, et al.Comparison of the phenotype of NK1R-/- mice with pharmacological blockade of the substance P (NK1) receptor in assays for antidepressant and anxiolytic drugs. Behav Pharmacol. 2001;12:497508.CrossRefGoogle ScholarPubMed
17.Santarelli, L, Gobbi, G, Debs, PC, et al.Genetic and pharmacological disruption of neurokinin 1 receptor function decreases anxiety-related behaviors and increases serotonergic function. Proc Natl Acad Sci U S A. 2001;98:19121917.CrossRefGoogle ScholarPubMed
18. Bilkei-Gorzo, A, Racz, I, Michel, K, Zimmer, A. Diminished anxiety- and depression-related behaviors in mice with selective deletion of the Tacl gene. J Neurosci. 2002;22:1004610052.CrossRefGoogle Scholar
19.Santarelli, L, Gobbi, G, Blier, P, Hen, R. Behavioral and physiologic effects of genetic or pharmacologic inactivation of the substance P receptor (NK1). J Clin Psychiatry. 2002;63(suppl 11):1117.Google ScholarPubMed
20.Brodin, E, Rosen, A, Schott, E, Brodin, K. Effects of sequential removal of rats from a group cage, and of individual housing of rats, on substance P, cholecystokinin and somatostatin levels in the periaqueductal grey and limbic regions. Neuropeptides. 1994;26:253260.CrossRefGoogle ScholarPubMed
21.Shirayama, Y, Mitsushio, H, Takashima, M, Ichikawa, H, Takahashi, K. Reduction of substance P after chronic antidepressants treatment in the striatum, substantia nigra and amygdala of the rat. Brain Res. 1996;739:7078.CrossRefGoogle ScholarPubMed
22.Rimon, R, Le Greves, P, Nyberg, F, et al.Elevation of substance P-like peptides in the CSF of psychiatric patients. Biol Psychiatry. 1984;19:509516.Google Scholar
23.Berrettini, WH, Rubinow, DR, Nurnberger, JI Jr, et al.CSF substance P immunoreactivity in affective disorders. Biol Psychiatry. 1985;20:965970.CrossRefGoogle ScholarPubMed
24.Snider, RM, Constantine, JW, Lowe, JA III, et al.A potent nonpeptide antagonist of the substance P (NK1) receptor. Science. 1991;251:435437.CrossRefGoogle ScholarPubMed
25.Hill, R. NK1 (substance P) receptor antagonists—why are they not analgesic in humans? Trends Pharmacol Sci. 2000;21:244246.CrossRefGoogle Scholar
26.Campos, D, Pereira, JR, Reinhardt, RR, et al.Prevention of cisplatin-induced emesis by the oral neurokinin-1 antagonist, MK-869, in combination with granisetron and dexamethasone or with dexamethasone alone. J Clin Oncol. 2001;19:17591767.CrossRefGoogle ScholarPubMed
27.Van Belle, S, Lichinitser, MR, Navari, RM, et al.Prevention of cisplatin-induced acute and delayed emesis by the selective neurokinin-1 antagonists, L-758,298 and MK-869. Cancer. 2002;94:30323041.CrossRefGoogle ScholarPubMed
28.Kamali, F. Osanetant Sanofi-Synthelabo. Curr Opin Investig Drugs. 2001;2:950956.Google ScholarPubMed
29.Ribeiro, SJ, De Lima, TC. Naloxone-induced changes in tachykinin NK3 receptor modulation of experimental anxiety in mice. Neurosci Lett. 1998;258:155158.CrossRefGoogle ScholarPubMed
30.Guard, S, Boyle, SJ, Tang, KW, et al.The interaction of the NK1 receptor antagonist CP-96,345 with L-type calcium channels and its functional consequences. Br J Pharmacol. 1993;110:385391.CrossRefGoogle ScholarPubMed
31.Cheeta, S, Tucci, S, Sandhu, J, et al.Anxiolytic actions of the substance P (NK1) receptor antagonist L-760735 and the 5-HT1A agonist 8-OH-DPAT in the social interaction test in gerbils. Brain Res. 2001;915:170175.CrossRefGoogle ScholarPubMed
32.Hargreaves, R. Imaging substance P receptors (NK1) in the living human brain using positron emission tomography. J Clin Psychiatry. 2002;63(suppl 11):1824.Google ScholarPubMed
33.Duncan, GE, Breese, GR, Criswell, H, et al.Effects of antidepressant drugs injected into the amygdala on behavioral responses of rats in the forced swim test. J Pharmacol Exp Ther. 1986;238:758762.Google ScholarPubMed
34.Shaikh, MB, Steinberg, A, Siegel, A. Evidence that substance P is utilized in medial amygdaloid facilitation of defensive rage behavior in the cat. Brain Res. 1993;625:283294.CrossRefGoogle ScholarPubMed
35.Mantyh, PW, Allen, CJ, Ghilardi, JR, et al.Rapid endocytosis of a G proteincoupled receptor: substance P evoked internalization of its receptor in the rat striatum in vivo. Proc Natl Acad Sci U S A. 1995;92:26222626.CrossRefGoogle Scholar
36.Smith, DW, Hewson, L, Fuller, P, et al.The substance P antagonist L-760,735 inhibits stress-induced NK(1) receptor internalisation in the basolateral amygdala. Brain Res. 1999;848:9095.CrossRefGoogle ScholarPubMed
37.Boyce, S, Smith, D, Carlson, E, et al.Intra-amygdala injection of the substance P [NK(1) receptor] antagonist L-760735 inhibits neonatal vocalisations in guinea-pigs. Neuropharmacology. 2001;41:130137.CrossRefGoogle ScholarPubMed
38.Sapolsky, R. Stress, the Aging Brain and the Mechanism of Neuron Death. Cambridge, MA: The MIT Press, 1992:423.Google Scholar
39.Duman, RS, Heninger, GR, Nestler, EJ. A molecular and cellular theory of depression. Arch Gen Psychiatry. 1997;54:597606.CrossRefGoogle ScholarPubMed
40.Willner, P, Muscat, R, Papp, M. Chronic mild stress-induced anhedonia: a realistic animal model of depression. Neurosci Biobehav Rev. 1992;16:525534.CrossRefGoogle ScholarPubMed
41.Froger, N, Gardier, AM, Moratalla, R, et al.5-hydroxytryptamine (5-HT)1A autoreceptor adaptive changes in substance P (neurokinin 1) receptor knock-out mice mimic antidepressant-induced desensitization. J Neurosci. 2001;21:81888197.CrossRefGoogle ScholarPubMed
42.Commons, KG, Valentino, RJ. Cellular basis for the effects of substance P in the periaqueductal gray and dorsal raphe nucleus. J Comp Neurol. 2002;447:8297.CrossRefGoogle ScholarPubMed
43.Liu, R, Ding, Y, Aghajanian, GK. Neurokinins activate local glutamatergic inputs to serotonergic neurons of the dorsal raphe nucleus. Neuropsychopharmacology. 2002;27:329340.CrossRefGoogle ScholarPubMed
44.Conley, RK, Cumberbatch, MJ, Mason, GS, et al.Substance P (neurokinin 1) receptor antagonists enhance dorsal raphe neuronal activity. J Neurosci. 2002;22:77307736.CrossRefGoogle ScholarPubMed
45.Haddjeri, N, Blier, P. Sustained blockade of neurokinin-1 receptors enhances serotonin neurotransmission. Biol Psychiatry. 2001;50:191199.CrossRefGoogle ScholarPubMed
46.Chaput, Y, Blier, P, de Montigny, C. In vivo electrophysiological evidence for the regulatory role of autoreceptors on serotonergic terminals. J Neurosci. 1986;6:27962801.CrossRefGoogle ScholarPubMed
47.Haddjeri, N, Blier, P. Effect of neurokinin-I receptor antagonists on the function of 5-HT and noradrenaline neurons. Neuroreport. 2000;11:13231327.CrossRefGoogle ScholarPubMed
48.Valentino, RJ, Bey, V, Commons, KG. The effects of substance P (SP) on neurons of the rat dorsal raphe nucleus (DR) require activation of serotonin (5-HT) 1A receptors. Soc Neurosci Abst. 2002;636:3.Google Scholar
49.Maubach, KA, Martin, K, Chicchi, G, et al.Chronic substance P (NK1) receptor antagonist and conventional antidepressant treatment increases burst firing of monoamine neurones in the locus coeruleus. Neuroscience. 2002;109:609617.CrossRefGoogle ScholarPubMed
50.Suaud-Chagny, MF, Mermet, C, Gonon, F. Electrically evoked noradrenaline release in the rat hypothalamic paraventricular nucleus studied by in vivo electrochemistry: characterization and facilitation by increasing the stimulation frequency. Neuroscience. 1990;34:411422.CrossRefGoogle ScholarPubMed
51.Millan, MJ, Lejeune, F, De Nanteuil, G, Gobert, A. Selective blockade of neurokinin (NK)(1) receptors facilitates the activity of adrenergic pathways projecting to frontal cortex and dorsal hippocampus in rats. J Neurochem. 2001;76:19491954.CrossRefGoogle Scholar
52.Neckers, LM, Schwartz, JP, Wyatt, RJ, Speciale, SG. Substance P afferents from the habenula innervate the dorsal raphe nucleus. Exp Brain Res. 1979;37:619623.CrossRefGoogle ScholarPubMed
53.Kehne, JH, Coverdale, S, McCloskey, TC, Hoffman, DC, Cassella, JV. Effects of the CRF(1) receptor antagonist, CP 154,526, in the separation-induced vocalization anxiolytic test in rat pups. Neuropharmacology. 2000;39:13571367.CrossRefGoogle ScholarPubMed
54.O'Brien, D, Skelton, KH, Owens, MJ, Nemeroff, CB. Are CRF receptor antagonists potential antidepressants? Hum Psychopharmacol. 2001;16:8187.CrossRefGoogle ScholarPubMed
55.Griebel, G, Simiand, J, Serradeil-Le Gal, C, et al.Anxiolytic- and antidepressant-like effects of the non-peptide vasopressin V1b receptor antagonist, SSR149415, suggest an innovative approach for the treatment of stress-related disorders. Proc Natl Acad Sci U S A. 2002;99:63706375.CrossRefGoogle ScholarPubMed