Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-05-19T17:50:41.527Z Has data issue: false hasContentIssue false

Fearful temperament in middle childhood predicts adolescent attention bias and anxiety symptoms: The moderating role of frontal EEG asymmetry

Published online by Cambridge University Press:  13 December 2021

Ran Liu*
Affiliation:
The Division of Child and Adolescent Psychiatry, Department of Psychiatry, Vagelos College of Physicians & Surgeons, Columbia University Irving Medical Center, New York, USA
Martha Ann Bell
Affiliation:
Department of Psychology, Virginia Tech, Blacksburg, USA
*
Corresponding author: Ran Liu, email: rl3206@cumc.columbia.edu

Abstract

The current study provided first analyses of the moderating effect of baseline-to-task frontal EEG asymmetry on the associations between 9-year fearful temperament and adolescent attention bias to threat as well as anxiety symptoms. Participants include a community sample of 122 children (60 boys, 62 girls; Mage = 14.66 years; Range = 11.82–18.13 years). Baseline-to-task frontal EEG asymmetry at age 9 moderated the relation between fearful temperament at age 9 and adolescent anxiety symptoms. Specifically, fearful temperament predicted adolescent anxiety symptoms when children showed greater right activation from baseline to an executive function task, but not greater left activation. Baseline-to-task frontal EEG asymmetry moderated the association between fearful temperament and sustained (i.e., stimulus onset asynchrony is 1250 ms) but not automatic attention bias (i.e., stimulus onset asynchrony is 500 ms). Children with greater left frontal activation from baseline to task more efficiently direct attention away from threat. Adolescent automatic attention bias to threat was related to concurrent anxiety symptoms. These findings illustrate the importance of considering frontal EEG asymmetry to shape how fearful children process threat and to influence their behavioral problems.

Type
Regular Article
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abend, R., Voogd, L. de, Salemink, E., Wiers, R. W., Pérez-Edgar, K., Fitzgerald, A., White, L. K., Salum, G. A., He, J., Silverman, W. K., Pettit, J. W., Pine, D. S., & Bar-Haim, Y. (2018). Association between attention bias to threat and anxiety symptoms in children and adolescents. Depression and Anxiety, 35, 229238. https://doi.org/10.1002/da.22706 CrossRefGoogle Scholar
Aiken, L. S., West, S. G., & Reno, R. R. (1991). Multiple regression: Testing and interpreting interactions. Sage.Google Scholar
Bar-Haim, Y., Lamy, D., Pergamin, L., Bakermans-Kranenburg, M. J., & van IJzendoorn, M. H. (2007). Threat-related attentional bias in anxious and nonanxious individuals: A meta-analytic study. Psychological Bulletin, 133, 124. https://doi.org/10.1037/0033-2909.133.1.1 CrossRefGoogle Scholar
Bell, M. A., & Cuevas, K. (2012). Using EEG to study cognitive development: Issues and practices. Journal of Cognition and Development: Official Journal of the Cognitive Development Society, 13, 281294. https://doi.org/10.1080/15248372.2012.691143 CrossRefGoogle Scholar
Bishop, S. J., Jenkins, R., & Lawrence, A. D. (2007). Neural processing of fearful faces: Effects of anxiety are gated by perceptual capacity limitations. Cerebral Cortex, 17, 15951603. https://doi.org/10.1093/cercor/bhl070 CrossRefGoogle Scholar
Buss, K. A., Cho, S., Morales, S., McDoniel, M., Webb, A. F., Schwartz, A., Cole, P. M., Dorn, L. D., Gest, S., & Teti, D. M. (2021). Toddler dysregulated fear predicts continued risk for social anxiety symptoms in early adolescence. Development and Psychopathology, 33, 252263. https://doi.org/10.1017/S0954579419001743 CrossRefGoogle Scholar
Carter, R., Silverman, W. K., & Jaccard, J. (2011). Sex variations in youth anxiety symptoms: Effects of pubertal development and gender role orientation. Journal of Clinical Child & Adolescent Psychology, 40, 730741. https://doi.org/10.1080/15374416.2011.597082 CrossRefGoogle Scholar
Chang, T.-T., Metcalfe, A. W. S., Padmanabhan, A., Chen, T., & Menon, V. (2016). Heterogeneous and nonlinear development of human posterior parietal cortex function. NeuroImage, 126, 184195. https://doi.org/10.1016/j.neuroimage.2015.11.053 CrossRefGoogle Scholar
Chen, X., Fu, R., Li, D., Chen, H., Wang, Z., & Wang, L. (2020). Behavioral inhibition in early childhood and adjustment in late adolescence in China. Child Development, 92, 9941010. https://doi.org/10.1111/cdev.13463 CrossRefGoogle Scholar
Chorpita, B. F., Moffitt, C. E., & Gray, J. (2005). Psychometric properties of the revised child anxiety and depression scale in a clinical sample. Behaviour Research and Therapy, 43, 309322. https://doi.org/10.1016/j.brat.2004.02.004 CrossRefGoogle Scholar
Chorpita, B. F., Yim, L., Moffitt, C., Umemoto, L. A., & Francis, S. E. (2000). Assessment of symptoms of DSM-IV anxiety and depression in children: A revised child anxiety and depression scale. Behaviour Research and Therapy, 38, 835855. https://doi.org/10.1016/S0005-7967(99)00130-8 CrossRefGoogle Scholar
Cicchetti, D., & Rogosch, F. A. (2002). A developmental psychopathology perspective on adolescence. Journal of Consulting and Clinical Psychology, 70, 620. https://doi.org/10.1037//0022-006X.70.1.6 CrossRefGoogle Scholar
Cisler, J. M., & Koster, E. H. W. (2010). Mechanisms of attentional biases towards threat in anxiety disorders: An integrative review. Clinical Psychology Review, 30, 203216. https://doi.org/10.1016/j.cpr.2009.11.003 CrossRefGoogle Scholar
Clayson, P. E., & Miller, G. A. (2017). Psychometric considerations in the measurement of event-related brain potentials: Guidelines for measurement and reporting. International Journal of Psychophysiology, 111, 5767. https://doi.org/10.1016/j.ijpsycho.2016.09.005 CrossRefGoogle Scholar
Davidson, R. J. (2001). The neural circuitry of emotion and affective style: Prefrontal cortex and amygdala contributions. Social Science Information, 40, 1137. https://doi.org/10.1177/053901801040001002 CrossRefGoogle Scholar
De Raedt, R., Leyman, L., Baeken, C., Van Schuerbeek, P., Luypaert, R., Vanderhasselt, M. A., & Dannlowski, U. (2010). Neurocognitive effects of HF-rTMS over the dorsolateral prefrontal cortex on the attentional processing of emotional information in healthy women: An event-related fMRI study. Biological Psychology, 85, 487495. https://doi.org/10.1016/j.biopsycho.2010.09.015 CrossRefGoogle Scholar
Degnan, K. A., & Fox, N. A. (2007). Behavioral inhibition and anxiety disorders: Multiple levels of a resilience process. Development and Psychopathology, 19, 729746. doi: 10.1017/S0954579407000363 CrossRefGoogle Scholar
Dubreuil-Vall, L., Chau, P., Ruffini, G., Widge, A. S., & Camprodon, J. A. (2019). tDCS to the left DLPFC modulates cognitive and physiological correlates of executive function in a state-dependent manner. Brain Stimulation, 12, 14561463. https://doi.org/10.1016/j.brs.2019.06.006 CrossRefGoogle Scholar
Dudeney, J., Sharpe, L., & Hunt, C. (2015). Attentional bias towards threatening stimuli in children with anxiety: A meta-analysis. Clinical Psychology Review, 40, 6675. https://doi.org/10.1016/j.cpr.2015.05.007 CrossRefGoogle Scholar
Ellis, L. K., & Rothbart, M. K. (2001). Revision of the early adolescent temperament questionnaire. Paper presented at the 2001 meeting of the Society for Research in Child Development, Minneapolis, MN, April.Google Scholar
Fitzgerald, K. D., Liu, Y., Stern, E. R., Welsh, R. C., Hanna, G. L., Monk, C. S., Phan, K. L., & Taylor, S. F. (2013). Reduced error-related activation of dorsolateral prefrontal cortex across pediatric anxiety disorders. Journal of the American Academy of Child & Adolescent Psychiatry, 52, 11831191. https://doi.org/10.1016/j.jaac.2013.09.002 CrossRefGoogle Scholar
Fox, N. A. (1994). Dynamic cerebral processes underlying emotion regulation. In Fox, N. A. (Ed.), The development of emotion regulation: Biological and behavioral considerations. Monographs of the society for research in child development (pp. 152166). Society for Research in Child Development.Google Scholar
Fu, X., & Pérez-Edgar, K. (2019). Threat-related attention bias in socioemotional development: A critical review and methodological considerations. Developmental Review, 51, 3157. https://doi.org/10.1016/j.dr.2018.11.002 CrossRefGoogle Scholar
Fu, X., Taber-Thomas, B. C., & Pérez-Edgar, K. (2017). Frontolimbic functioning during threat-related attention: Relations to early behavioral inhibition and anxiety in children. Biological Psychology, 122, 98109. https://doi.org/10.1016/j.biopsycho.2015.08.010 CrossRefGoogle Scholar
Grimshaw, G. M., & Carmel, D. (2014). An asymmetric inhibition model of hemispheric differences in emotional processing. Frontiers in Psychology, 5, 489. https://doi.org/10.3389/fpsyg.2014.00489 CrossRefGoogle Scholar
Grimshaw, G. M., Foster, J. J., & Corballis, P. M. (2014). Frontal and parietal EEG asymmetries interact to predict attentional bias to threat. Brain and Cognition, 90, 7686. https://doi.org/10.1016/j.bandc.2014.06.008 CrossRefGoogle Scholar
Harmon-Jones, E., & Gable, P. A. (2018). On the role of asymmetric frontal cortical activity in approach and withdrawal motivation: An updated review of the evidence. Psychophysiology, 55, e12879. https://doi.org/10.1111/psyp.12879 CrossRefGoogle Scholar
Heffer, T., & Willoughby, T. (2020). A longitudinal study investigating trajectories of sensitivity to threat over time and their association with alpha asymmetry among children and adolescents. Developmental Cognitive Neuroscience, 46, 100863. https://doi.org/10.1016/j.dcn.2020.100863 CrossRefGoogle Scholar
Henderson, H., Pine, D. & Fox, N (2015). Behavioral inhibition and developmental risk: A dual-processing perspective. Neuropsychopharmacology, 40, 207224. https://doi.org/10.1038/npp.2014.189 CrossRefGoogle Scholar
Hu, L., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling: A Multidisciplinary Journal, 6, 155. https://doi.org/10.1080/10705519909540118 CrossRefGoogle Scholar
Johnstone, T., Van Reekum, C. M., Urry, H. L., Kalin, N. H., & Davidson, R. J. (2007). Failure to regulate: Counterproductive recruitment of top-down prefrontal-subcortical circuitry in major depression. Journal of Neuroscience, 27, 88778884.CrossRefGoogle Scholar
Kagan, J., Reznick, J. S., Clarke, C., Snidman, N., & Garcia-Coll, C. (1984). Behavioral inhibition to the unfamiliar. Child Development, 55, 22122225. https://doi.org/10.2307/1129793 CrossRefGoogle Scholar
Kolb, B., Mychasiuk, R., Muhammad, A., Li, Y., Frost, D. O., & Gibb, R. (2012). Experience and the developing prefrontal cortex. Proceedings of the National Academy of Sciences, 109, 1718617193. https://doi.org/10.1073/pnas.1121251109 CrossRefGoogle Scholar
Lau, J. Y. F., & Waters, A. M. (2017). Annual research review: An expanded account of information-processing mechanisms in risk for child and adolescent anxiety and depression. Journal of Child Psychology and Psychiatry, 58, 387407. https://doi.org/10.1111/jcpp.12653 CrossRefGoogle Scholar
Liu, R., & Bell, M. A. (2020). Fearful temperament and the risk for child and adolescent anxiety: The role of attention biases and effortful control. Clinical Child and Family Psychology Review, 23, 205228. https://doi.org/10.1007/s10567-019-00306-z CrossRefGoogle Scholar
Liu, R., Calkins, S. D., & Bell, M. A. (2021). Frontal EEG asymmetry moderates the associations between negative temperament and behavioral problems during childhood. Development and Psychopathology, 33, 1016–1025. https://doi.org/10.1017/S0954579420000309 CrossRefGoogle Scholar
LoBue, V., & Pérez-Edgar, K. (2014). Sensitivity to social and non-social threats in temperamentally shy children at-risk for anxiety. Developmental Science, 17, 239247. https://doi.org/10.1111/desc.12110 CrossRefGoogle Scholar
Lonigan, C. J., & Vasey, M. W. (2009). Negative affectivity, effortful control, and attention to threat-relevant stimuli. Journal of Abnormal Child Psychology, 37, 387399. https://doi.org/10.1007/s10802-008-9284-y CrossRefGoogle Scholar
Marshall, P. J., Bar-Haim, Y., & Fox, N. A. (2002). Development of the EEG from 5 months to 4 years of age. Clinical Neurophysiology, 113, 11991208. https://doi.org/10.1016/S1388-2457(02)00163-3 CrossRefGoogle Scholar
Mathersul, D., Williams, L. M., Hopkinson, P. J., & Kemp, A. H. (2008). Investigating models of affect: Relationships among EEG alpha asymmetry, depression, and anxiety. Emotion, 8, 560. https://doi.org/10.1037/a0012811 CrossRefGoogle Scholar
Metzger, L. J., Paige, S. R., Carson, M. A., Lasko, N. B., Paulus, L. A., Pitman, R. K., & Orr, S. P. (2004). PTSD arousal and depression symptoms associated with increased right-sided parietal EEG asymmetry. Journal of Abnormal Psychology, 113, 324. https://doi.org/10.1037/0021-843X.113.2.324 CrossRefGoogle Scholar
Mogg, K., & Bradley, B. P. (2018). Anxiety and threat-related attention: Cognitive-motivational framework and treatment. Trends in Cognitive Sciences, 22, 225240. https://doi.org/10.1016/j.tics.2018.01.001 CrossRefGoogle Scholar
Monk, C. S., Telzer, E. H., Mogg, K., Bradley, B. P., Mai, X., Louro, H. M. C., Chen, G., McClure-Tone, E. B., Ernst, M., & Pine, D. S. (2008). Amygdala and ventrolateral prefrontal cortex activation to masked angry faces in children and adolescents with generalized anxiety disorder. Archives of General Psychiatry, 65, 568576. https://doi.org/10.1001/archpsyc.65.5.568 CrossRefGoogle Scholar
Morales, S., Pérez-Edgar, K.E. & Buss, K.A (2015). Attention biases towards and away from threat mark the relation between early dysregulated fear and the later emergence of social withdrawal. Journal of Abnormal Child Psychology, 43, 10671078. https://doi.org/10.1007/s10802-014-9963-9 CrossRefGoogle Scholar
Morales, S., Taber-Thomas, B. C., & Pérez-Edgar, K. E. (2017). Patterns of attention to threat across tasks in behaviorally inhibited children at risk for anxiety. Developmental Science, 20, e12391. https://doi.org/10.1111/desc.12391 CrossRefGoogle Scholar
Muthén, L. K., & Muthén, B. O. (1998–2017). Mplus user’s guide. Muthén & Muthén.Google Scholar
Myslobodsky, M. S., Coppola, R., Bar-Ziv, J., Karson, C., Daniel, D., van Praag, H., & Weinberger, D. R. (1989). EEG asymmetries may be affected by cranial and brain parenchymal asymmetries. Brain Topography, 1, 221228. https://doi.org/10.1007/BF01129599 CrossRefGoogle Scholar
Niedermeyer, E. (1999). Maturation of the EEG: Development of waking and sleep patterns. In Niedermeyer, E. & da Silva, F. H. L. (Eds.), Electroencephalography: Basic principles, clinical applications, and related fields (pp. 189214). Williams & Wilkins.Google Scholar
Pérez-Edgar, K., Bar-Haim, Y., McDermott, J. M., Chronis-Tuscano, A., Pine, D. S., & Fox, N. A. (2010). Attention biases to threat and behavioral inhibition in early childhood shape adolescent social withdrawal. Emotion, 10, 349357. https://doi.org/10.1037/a0018486 CrossRefGoogle Scholar
Pérez-Edgar, K., Kujawa, A., Nelson, S. K., Cole, C., & Zapp, D. J. (2013). The relation between electroencephalogram asymmetry and attention biases to threat at baseline and under stress. Brain and Cognition, 82, 337343. https://doi.org/10.1016/j.bandc.2013.05.009 CrossRefGoogle Scholar
Petersen, A. C., Crockett, L., Richards, M., & Boxer, A. (1988). A self-report measure of pubertal status: Reliability, validity, and initial norms. Journal of Youth and Adolescence, 17, 117133. https://doi.org/10.1007/BF01537962 CrossRefGoogle Scholar
Price, R. B., Kuckertz, J. M., Siegle, G. J., Ladouceur, C. D., Silk, J. S., Ryan, N. D., Dahl, R. E., & Amir, N. (2015). Empirical recommendations for improving the stability of the dot-probe task in clinical research. Psychological Assessment, 27, 365376. https://doi.org/10.1037/pas0000036 CrossRefGoogle Scholar
Rapee, R. M. (2014). Preschool environment and temperament as predictors of social and nonsocial anxiety disorders in middle adolescence. Journal of the American Academy of Child & Adolescent Psychiatry, 53, 320328. https://doi.org/10.1016/j.jaac.2013.11.014 CrossRefGoogle Scholar
Rapee, R. M., Schniering, C. A., & Hudson, J. L. (2009). Anxiety disorders during childhood and adolescence: Origins and treatment. Annual Review of Clinical Psychology, 5, 311341. https://doi.org/10.1146/annurev.clinpsy.032408.153628 CrossRefGoogle Scholar
Reznik, S. J., & Allen, J. J. B. (2018). Frontal asymmetry as a mediator and moderator of emotion: An updated review. Psychophysiology, 55, e12965. https://doi.org/10.1111/psyp.12965 CrossRefGoogle Scholar
Rubin, K. H., Coplan, R. J., & Bowker, J. C. (2009). Social withdrawal in childhood. Annual Review of Psychology, 60, 141171. https://doi.org/10.1146/annurev.psych.60.110707.163642 CrossRefGoogle Scholar
Solomon, B., O’Toole, L., Hong, M., & Dennis, T. A. (2014). Negative affectivity and EEG asymmetry interact to predict emotional interference on attention in early school-aged children. Brain and Cognition, 87, 173180. https://doi.org/10.1016/j.bandc.2014.03.014 CrossRefGoogle Scholar
Todd, R. M., Cunningham, W. A., Anderson, A. K., & Thompson, E. (2012). Affect-biased attention as emotion regulation. Trends in Cognitive Sciences, 16, 365372. https://doi.org/10.1016/j.tics.2012.06.003 CrossRefGoogle ScholarPubMed
Tottenham, N., Tanaka, J. W., Leon, A. C., McCarry, T., Nurse, M., Hare, T. A., Marcus, D. J., Westerlund, A., Casey, B., & Nelson, C. (2009). The NimStim set of facial expressions: Judgments from untrained research participants. Psychiatry Research, 168, 242249. https://doi.org/10.1016/j.psychres.2008.05.006 CrossRefGoogle Scholar
Van Oort, F. V. A., Greaves-Lord, K., Verhulst, F. C., Ormel, J., & Huizink, A. C. (2009). The developmental course of anxiety symptoms during adolescence: The TRAILS study. Journal of Child Psychology and Psychiatry, 50, 12091217. https://doi.org/10.1111/j.1469-7610.2009.02092.x CrossRefGoogle Scholar
Vuga, M., Fox, N. A., Cohn, J. F., Kovacs, M., & George, C. J. (2008). Long-term stability of electroencephalographic asymmetry and power in 3 to 9 year-old children. International Journal of Psychophysiology, 67, 7077. https://doi.org/10.1016/j.ijpsycho.2007.10.007 CrossRefGoogle Scholar
Waters, A., Bradley, B., & Mogg, K. (2014). Biased attention to threat in paediatric anxiety disorders (generalized anxiety disorder, social phobia, specific phobia, separation anxiety disorder) as a function of ‘distress’ versus ‘fear’ diagnostic categorization. Psychological Medicine, 44, 607616. doi: 10.1017/S0033291713000779 CrossRefGoogle Scholar
Whisman, M. A., & McClelland, G. H. (2005). Designing, testing, and interpreting interactions and moderator effects in family research. Journal of Family Psychology, 19, 111. https://doi.org/10.1037/0893-3200.19.1.111 CrossRefGoogle Scholar
White, L. K., Degnan, K. A., Henderson, H. A., Pérez-Edgar, K., Walker, O. L., Shechner, T., Leibenluft, E., Bar-Haim, Y., Pine, D. S., & Fox, N. A. (2017). Developmental relations among behavioral inhibition, anxiety, and attention biases to threat and positive information. Child Development, 88, 141155. https://doi.org/10.1111/cdev.12696 CrossRefGoogle Scholar
Supplementary material: File

Liu and Bell supplementary material

Liu and Bell supplementary material

Download Liu and Bell supplementary material(File)
File 32.3 KB