Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-05-21T20:16:50.809Z Has data issue: false hasContentIssue false

Depositional environments, sediment characteristics, palaeoecological analysis and environmental assessment of an internationally protected shallow Mediterranean lagoon, Gialova Lagoon – Navarino Bay, Greece

Published online by Cambridge University Press:  25 May 2015

P. Avramidis
Affiliation:
Department of Geology, University of Patras, 26504 Patras, Greece. Email: p.avramidis@upatras.gr
G. Iliopoulos
Affiliation:
Department of Geology, University of Patras, 26504 Patras, Greece. Email: p.avramidis@upatras.gr
N. Kontopoulos
Affiliation:
Department of Geology, University of Patras, 26504 Patras, Greece. Email: p.avramidis@upatras.gr
D. Panagiotaras
Affiliation:
Department of Mechanical Engineering, Technological Educational Institute of Western Greece, 26334 Patras, Greece.
P. Barouchas
Affiliation:
Laboratory of Soils and Irrigation, Technological Educational Institute of Western Greece, Nea Ktiria, 30200 Mesolonghi, Greece.
K. Nikolaou
Affiliation:
Department of Geology, University of Patras, 26504 Patras, Greece. Email: p.avramidis@upatras.gr
P. Papadopoulou
Affiliation:
Department of Geology, University of Patras, 26504 Patras, Greece. Email: p.avramidis@upatras.gr

Abstract

This study presents sedimentological, palaeoecological and geochemical data from a shallow Mediterranean coastal lagoon which has been severely influenced by human intervention over the last 70 years. The Gialova Lagoon is protected by international conventions and is listed in the Natura 2000 European Community Network as Special Protection Area (SPA) and Site of Community Importance (SCI). The spatial variability of sediment characteristics such as grain size, total organic carbon (TOC) and moment measures, mean, sorting, kurtosis and skewness were calculated. Moreover, micro- and macrofossil and sediment geochemical analyses were carried out on six gravity core samples. Study of the above parameters indicates that the anthropogenic impact and intervention are reflected in the micro- (ostracods, foraminifera, charophytes) and macrofossil (molluscs) taxa corresponding to different depositional environmental facies, representing a brackish lagoon with the influence of (a) fresh water inflow, (b) shallow marine environment and (c) hypoxic and dystrophic conditions. The geochemical characteristics and the calculation of the degree of sediment contamination using enrichment factors (EF), contamination factors (Cif) and the index of geo-accumulation (Igeo) indicate a recent relative improvement of the lagoon towards the upper layers of the gravity cores, rendering the lagoon as unpolluted to moderately polluted. This combinatorial study of sediment geochemical characteristics, as well as the downcore micro- and macrofossil assemblages, can be considered as a baseline for future monitoring in accordance with European Union directives, and for any future engineering interventions for the lagoon environmental maintenance and conservation; as this is the first time that geochemical and downcore palaeoecological data have been presented from this lagoon.

Type
Articles
Copyright
Copyright © The Royal Society of Edinburgh 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

6. References

Abrahim, G. M. S. & Parker, R. J. 2008. Assessment of heavy metal enrichment factors and the degree of contamination in marine sediments from Tamaki Estuary, Auckland, New Zealand. Environmental Monitoring Assessment 136, 227–38.Google Scholar
Acquavita, A., Predonzani, S., Mattassi, G., Rossin, P., Tamberlich, F., Falomo, J. & Valic, I. 2010. Heavy metal contents and distribution in coastal sediments of the Gulf of Trieste (Northern Adriatic Sea, Italy). Water Air Soil Pollution 211, 95111.Google Scholar
Appeltans, W., Bouchet, P., Boxshall, G. A., De Broyer, C., de Voogd, N. J., Gordon, D. P., Hoeksema, B. W., Horton, T., Kennedy, M., Mees, J., Poore, G. C. B., Read, G., Stöhr, S., Walter, T.C. & Costello, M. J. (eds) 2012. World Register of Marine Species. Accessed at http://www.marinespecies.org on 2013-08-05.Google Scholar
Arvanitidis, C., Koutsoubas, D., Dounas, K. & Eleftheriou, A. 1999. Annelid fauna of a Mediterranean lagoon (Gialova Lagoon, southwest Greece): community structure in a severely fluctuating environment. Journal of the Marine Biological Association of the UK 79, 849–56.Google Scholar
Aubouin, J. 1959. Contribution a l'étude geologique de la Grèce septentrionale: le confins de l'Epire et de la Thessalie. Annales Géoliques Pays Hellenique 10, 1483.Google Scholar
Avramidis, P., Bouzos, D., Antoniou, V. & Kontopoulos, N. 2008. Application of grain size trend analysis and spatiotemporal changes, as a tool for lagoon management. Case study of the Kotychi Lagoon, western Greece. Geologica Carpathica 59, 261–68.Google Scholar
Avramidis, P., Bekiari, V., Kontopoulos, N. & Kokidis, N. 2013. Shallow coastal lagoon sediment characteristics and water physicochemical parameters – Myrtari Lagoon, Mediterranean Sea, western Greece. Fresenius Environmental Bulletin 22, 1625–38.Google Scholar
Bellucci, L. G., Giuliani, S., Mugnai, C., Frignani, M., Paolucci, D., Albertazzi, S. & Ruiz Fernandez, A. C. 2010. Anthropogenic metal delivery in sediments of Porto Marghera and Venice Lagoon (Italy). Soil Sediment Contamination 19, 4257.Google Scholar
Bird, E. 2008. Coastal geomorphology. An introduction. Chichester: John Wiley and Sons Ltd.Google Scholar
Blaser, P., Zimmermann, S., Luster, J. & Shotyk, W. 2000. Critical Examination of Trace Element Enrichments and Depletions in Soils: As, Cr, Cu, Ni, Pb and Zn in Swiss Forest Soils. The Science of the Total Environment 249, 257–80.Google Scholar
Britton, R. H. 1985. Life cycle and production of Hydrobia acuta Drap. (Gastropoda: Prosobranchia) in a hypersaline coastal lagoon. Hydrobiologia 122, 219–30.Google Scholar
Buller, A. T. & MacManus, J. 1972. Simple metric sedimentary statistics used to recognize different environments. Sedimentology 18, 121.Google Scholar
Burton, J. G. A. 2002. Sediment quality criteria in use around the world. Limnology 3, 6575.Google Scholar
Calvert, S. E. & Pedersen, T. F. 1993. Geochemistry of Recent oxic and anoxic marine sediments: Implications for the geological record. Marine Geology 113, 6788.Google Scholar
Chatzigeorgiou, G., Reizopoulou, S., Maidanou, M., Naletaki, M., Orneraki, E., Apostolaki, E. & Arvanitidis, C. 2011. Macrobenthic community changes due to dystrophic events and freshwater inflow: Changes in space and time in a Mediterranean lagoon (Gialova Lagoon, SW Greece). Estuarine Coastal and Shelf Science 94, 111–21.Google Scholar
Christophoridis, A., Stamatis, N. & Orfanidis, S. 2007. Sediment heavy metals of a Mediterranean coastal lagoon: Agiasma, Nestos Delta, Eastern Macedonia (Greece). Transitional Waters Bulletin 1, 3343.Google Scholar
Dassenakis, M., Krasakopoulou, E. & Matzara, B. 1994. Chemical Characteristics of Aetoliko Lagoon, Greece, after an Ecological Shock. Marine Pollution Bulletin 28, 427–33.Google Scholar
Debenay, J. P. & Guillou, J. J. 2002. Ecological transitions indicated by foraminiferal assemblages in paralic environments. Estuaries 25(6A), 1107–20.Google Scholar
Duane, D. B. 1964. Significance of skewness in recent sediments, western Pamlico Sound, North Carolina. Journal of Sedimentary Petrology 34, 864–74.Google Scholar
Duck, R. & Silva, J. F. 2012. Coastal lagoons and their evolution: A hydromorphological perspective. Estuarine, Coastal and Shelf Science 110, 214.Google Scholar
Folk, R. I. 1974. Petrology of sedimentary rocks. Austin, Texas: Hemphill. 170 pp.Google Scholar
Gaudette, H., Flight, W., Toner, L. & Folger, D. 1974. An inexpensive titration method for the determination of organic carbon in recent sediments. Journal of Sedimentary Petrology 44, 249–53.Google Scholar
Golterman, H. 2004. The Chemistry of Phosphate and Nitrogen Compounds in Sediments. Dordrecht, The Netherlands: Kluwer Academic Publishers.Google Scholar
Greek Coastal Zone Management Report. 2006. National Report of Greece on Coastal Zone Management. Athens: Ministry of Environment, Physical Planning and Public Works. 92 pp.Google Scholar
Håkanson, L. 1980. An Ecological Risk Index for Aquatic Pollution Control: A Sedimentological Approach. Water Research 14, 9751001.Google Scholar
Harikumar, P. S. & Jisha, T. S. 2010. Distribution pattern of trace metal pollutants in the sediments of an urban wetland in the southwest coast of India. International Journal of Engineering Science and Technology 2, 840–50.Google Scholar
Institute of Geology and Mineral Exploration of Greece (I.G.M.E.). 1980. Geological Map Sheet Koroni–Pylos–Skhiza. Scale 1:50000.Google Scholar
Jaccard, P. 1912. The distribution of the flora in the alpine zone. New Phytologist 11(2), 3750.Google Scholar
Karageorgis, A. P. 2007. Geochemical study of sediments from the Amvrakikos Gulf lagoon complex, Greece. Transitional Waters Bulletin 3, 38.Google Scholar
Karageorgis, A. P., Katsanevakis, S. & Kaberi, H. 2009. Use of enrichment factors for the assessment of heavy metal contamination in the sediments of Koumoundourou Lake, Greece. Water Air Soil Pollution 204, 243–58.Google Scholar
Karageorgis, A. P., Sioulas, A., Krasakopoulou, E., Anagnostou, C. L., Hatiris, G. A., Kyriakidou, H. & Vasilopoulos, K. 2012. Geochemistry of surface sediments and heavy metal contamination assessment: Messolonghi lagoon complex, Greece. Environmental Earth Science 65, 1619–29.Google Scholar
Kevrekidis, T., Kasapis, K. & Kalpia, V. 2009. Life cycle, population dynamics, growth and production of Abra segmentum (Mollusca, Bivalvia) at low salinities in a Mediterranean lagoon. Helgoland Marine Research 63, 277–85.Google Scholar
Kjerfve, B. 1994. Coastal lagoon processes. Amsterdam: Elsevier. 576 pp.Google Scholar
Koinig, K. A., Shotyk, W., Lotter, A. F., Ohlendorf, C. & Sturm, S. 2003. 9000 years of geochemical evolution of lithogenic major and trace elements in the sediment of an alpine lake: the role of climate, vegetation, and land-use history. Journal of Paleolimnology 30, 307–20.Google Scholar
Koutsoubas, D., Dounas, C., Arvanitidis, C., Kornilos, S., Petihakis, G., Triantafyllou, G. & Eleftheriou, A. 2000a. Macrobenthic community structure and disturbance assessment in Gialova Lagoon, Ionian Sea. ICES Journal of Marine Science 57, 1472–80.Google Scholar
Koutsoubas, D., Arvanitidis, C., Dounas, C. & Drummond, L. 2000b. Community structure and dynamics of the molluscan fauna in a mediterranean lagoon (Gialova Lagoon, SW Greece). Belgian Journal of Zoology 130, 135–42.Google Scholar
Kowalke, T. 2005. Mollusca in marginal marine and inland saline aquatic ecosystems – examples of Cretaceous to extant evolutionary dynamics. Zitteliana A45, 3564.Google Scholar
Liu, W. H., Zhao, J. Z., Ouyang, Z. Y., Söderlund, L. & Liu, G. H. 2005. Impacts of Sewage Irrigation on Heavy Metal Distribution and Contamination in Beijing, China. Environment International 31, 805–12.Google Scholar
McArthur, V., Koutsoubas, D., Lambadariou, N. & Dounas, C. 2000. The meiofaunal community structure of a Mediterranean lagoon (Gialova Lagoon, Ionian Sea). Helgoland Marine Research 54, 717.Google Scholar
MacDonald, D. D., Ingersoll, C. G. & Berger, T. A. 2000. Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Archive Environmental Contamination Toxicology 39, 2031.Google Scholar
Marriner, N., Morhange, C. & Doumet-Serhal, C. 2006. Geoarchaeology of Sidon's ancient harbours, Phoenicia. Journal of Archaeological Science 33, 1514–35.Google Scholar
Martins, L. R. 2003. Recent sediments and grain size analysis. Gravel 1, 90105.Google Scholar
Meyers, P. A. & Ishiwatari, R. 1993. Lacustrine organic geochemistry-an overview of indicators of organic matter sources and diagenesis in lake sediments. Organic Geochemistry 20, 867900.Google Scholar
Müller, G. 1979. Schwermetalle in den sedimenten des Rheins-Veranderungenseit 1971. Umschau 79, 778–83.Google Scholar
Murray, J. W. 2006. Ecology and Applications of Benthic Foraminifera. Cambridge: Cambridge University Press. 440 pp.Google Scholar
Panagiotaras, D., Papoulis, D., Kontopoulos, N. & Avramidis, P. 2012. Geochemical processes and sedimentological characteristics of Holocene lagoon deposits, Alikes Lagoon Zakynthos island, Western Greece. Geological Journal 47, 372–87.Google Scholar
Papatheodorou, G., Hotos, G., Geraga, M., Avramidou, D. & Vorinakis, T. 2002. Heavy metal concentrations in sediments of Klisova Lagoon (Southeast Mesolonghi – Aetolikon Lagoon complex), W. Greece. Fresenius Environmental Bulletin 11, 951–56.Google Scholar
Papatheodorou, G., Avramidis, P., Fakiris, E., Christodoulou, D. & Kontopoulos, N. 2012. Bed diversity in the shallow water environment of Pappas lagoon in Greece. International Journal of Sediment Research 27, 117.Google Scholar
Parker, A. G., Goudie, A. S., Stokes, S., White, K., Hodson, M. J., Manning, M. & Kennet, D. 2006. A record of Holocene climate change from lake geochemical analyses in southeastern Arabia. Quaternary Research 66, 465–76.Google Scholar
Pascual, A. & Carbonel, P. 1992. Distribution and annual variations of Loxoconcha elliptica in the Gernika estuary (Bay of Biscay). Geobios 25, 495503.Google Scholar
Petihakis, G., Triantafyllou, G., Koutsoubas, D., Allen, I. & Dounas, C. 1999. Modelling the annual cycles of nutrients and phytoplankton in a Mediterranean lagoon (Gialova, Greece). Marine Environmental Research 48, 3758.Google Scholar
Reimann, C. & de Caritat, P. 2005. Distinguishing between Natural and Anthropogenic Sources for Elements in the Environment: Regional Geochemical Surveys versus Enrichment Factors. The Science of the Total Environment 337, 91107.Google Scholar
Rubio, B., Nombela, M. A. & Vilas, F. 2000. Geochemistry of Major and Trace Elements in Sediments of the Ria de Vigo (NW Spain): an Assessment of Metal Pollution. Marine Pollution Bulletin 40, 968–80.Google Scholar
Sahu, K. C. & Bhosale, U. 1991. Heavy metal pollution around the island city of Bombay, India. Part I: quantification of heavy metal pollution of aquatic sediments and recognition of environmental discriminants. Chemical Geology 91, 263–83.Google Scholar
Salomons, W. & Förstner, U. 1984. Metals in the hydrocycle. Berlin, Heidelberg, New York, Tokyo: Springer-Verlag. 368 pp.Google Scholar
Subramanian, V. & Mohanachandran, G. 1990. Heavy metals distribution and enrichment in the sediments of Southern East Coast of India. Marine Pollution Bulletin 2, 324–30.Google Scholar
Taylor, S. R. & McLennan, S. M. 1985. The Continental Crust: its Composition and Evolution. Oxford, London, Edinburgh, Boston, Palo Alto, Melbourne: Blackwell Scientific. 312 pp.Google Scholar
Turekian, K. K. & Wedepohl, K. H. 1961. Distribution of the Elements in Some Major Units of the Earth's Crust. Geological Society of America Bulletin 72, 175–92.Google Scholar
Valia, H. S. & Cameron, B. 1977: Skewness as a paleoenvironmental indicator. Journal of Sedimentary Petrology 47, 784–93.Google Scholar
Varnavas, S. P., Panagos, A. G. & Laios, G. 1987. Trace elements in surface sediments of Navarino Bay, Greece. Environmental Geology and Water Sciences 10, 159–68.Google Scholar
Zaïbi, C., Carbonel, P., Kamoun, F., Fontugne, M., Azri, C., Jedoui, Y. & Montacer, M. 2012. Evolution of the sebkha Dreîaa (South-Eastern Tunisia, Gulf of Gabes) during the Late Holocene: Response of ostracod assemblages. Revue de Micropaléontologie 55, 8397.Google Scholar