Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-06-10T10:20:07.425Z Has data issue: false hasContentIssue false

The nature of zircon inheritance in two granite plutons

Published online by Cambridge University Press:  03 November 2011

B. A. Paterson
Affiliation:
Bruce A. Paterson, Isotope Geology Unit, Scottish Universities Research and Reactor Centre, East Kilbride, Glasgow G75 OQU, Scotland and Department of Geography and Geology, Division of Geology,University of St Andrews, St Andrews, Fife KY16 9ST, Scotland
W. E. Stephens
Affiliation:
W. Edryd Stephens, Department of Geography and Geology, Division of Geology,University of St Andrews, St Andrews, Fife KY16 9ST, Scotland
G. Rogers
Affiliation:
Graeme Rogers, Isotope Geology Unit, Scottish Universities Research and Reactor Centre, East Kilbride, Glasgow G75 0QU, Scotland
I. S. Williams
Affiliation:
Ian S. Williams, Research School of Earth Sciences, Australian National University, GPO Box 4, Canberra ACT 2601, Australia
R. W. Hinton
Affiliation:
Richard W. Hinton, Department of Geology and Geophysics, University of Edinburgh, Edinburgh EH9 3JW, Scotland
D. A. Herd
Affiliation:
Donald A. Herd, Department of Geography and Geology, Division of Geology,University of St Andrews, St Andrews, Fife KY16 9ST, Scotland

Abstract

Using zircons taken from two granite plutons, Strontian (Caledonian, northwestern Scotland) and Kameruka (Bega Batholith, southeastern Australia), this study presents observations that have a bearing on refractory zircons as provenance indicators. Two broad textural types of refractory zircon were identified: (1) those which show simple two-stage growth histories; and (2) those which have apparently undergone repeated periods of growth, resorption, mechanical abrasion, fracturing and fracture-healing. SHRIMP U-Pb ages obtained from the Kameruka zircons indicate that the cores are the textural manifestation of inheritance. The shapes of refractory cores are not unambiguously indicative of their ultimate origin, since they may also be modified by processes that occur before and after incorporation into the magma. The cores within the two populations show a great diversity in types and styles of zoning, and in composition, implying that they have not chemically equilibrated internally, or externally with their host melt.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Black, L. P., Williams, I. S. & Compston, W. 1986. Four zircon ages from one rock: the history of a 3930 Ma-old granulite from Mount Sones, Enderby Land, Antarctica. CONTRIB MINERAL PETROL 94, 427–37.CrossRefGoogle Scholar
Chappell, B. W. & White, A. J. R. 1974. Two contrasting granite types. PAC GEOL 8, 173–4.Google Scholar
Chappell, B. W., White, A. J. R. & Williams, I. S. 1991. A tranverse section through granites of the Lachlan Fold Belt. Excursion Guide: Second Hutton Symposium on Granites and Related Rocks. Canberra 1991. BUR MINER RES, GEOL GEOPHYS, REC 1991/92.Google Scholar
Chen, Y. D. & Williams, I. S. 1990. Zircon inheritance in mafic inclusions from the Bega Batholith granites, southeastern Australia: an ion microprobe study. J GEOPHYS RES 95, (suppl B) 17, 787–96.Google Scholar
Compston, W., Williams, I. S. & Meyer, C. 1984. Geochronology of zircons from the lunar breccia 73217 using a sensitive high mass-resolution ion microprobe. J GEOPHYS RES 89, (suppl B) 525–34.Google Scholar
Donaldson, C. H. 1985a. A comment on crystal shapes resulting from dissolution in magmas. MIN MAG 49, 129–32.CrossRefGoogle Scholar
Donaldson, C. H. 1985b. The dissolution rate of olivine, plagioclase, and quartz in a basaltic melt. MIN MAG 49, 683–93.CrossRefGoogle Scholar
Drake, M. J. & Weill, D. F. 1972. New rare earth element standards for electron microprobe analysis. CHEM GEOL 10, 179–81.CrossRefGoogle Scholar
Exley, R. A. 1980. Microprobe studies of REE-rich accessory minerals: implications for Skye granite petrogenesis and REE mobility in hydrothermal systems. EARTH PLANET SCI LETT 48, 97110.CrossRefGoogle Scholar
Foster, D. A., Harrison, T. M. & Miller, C. F. 1989. Age, inheritance, and uplift history of the Old-Woman-Piute batholith, California and implications for K-feldspar age spectra. J GEOL 97, 232–43.CrossRefGoogle Scholar
Grauert, B. & Arnold, A. 1968. Duetung diskordanter Zirkonalter der Silvrettadecke und des Gotthardmassivs (Schweizer Alpen). CONTRIB MINERAL PETROL 20, 3456.Google Scholar
Gulson, B. L. & Krogh, T. E. 1973. Old lead component in the young Bergell Massif, South-east Swiss Alps. CONTRIB MINERAL PETROL 40, 239–52.Google Scholar
Halliday, A. N., Aftalion, M., van Breemen, O. & Jocelyn, J. 1979. Petrogenetic significance of Rb-Sr and U-Pb isotopic systems in the 400 Ma-old British Isles granitoids and their hosts. In Harris, A. L., Holland, C. H. & Leake, B. E. (eds) The Caledonides of the British Isles-Reviewed. GEOL SOC LONDON SPEC PUBL 8, 653–61.Google Scholar
Harrison, T. M. & Watson, E. B. 1983. Kinetics of zircon dissolution and zirconium diffusion in granitic melts of variable water content. CONTRIB MINERAL PETROL 84, 6672.CrossRefGoogle Scholar
Harrison, T. M., Aleinikoff, J. N. & Compston, W. 1987. Observations and controls on the occurrence of inherited zircon in Concord-type granitoids, New Hampshire. GEOCHIM COSMOCHIM ACTA 51, 2549–58.CrossRefGoogle Scholar
Heaman, L. M., Bowins, R. & Crockett, J. 1990. The chemical composition of igneous zircon suites: implications for geochemical tracer studies. GEOCHIM COSMOCHIM ACTA I 54, 1597–607.CrossRefGoogle Scholar
Hinton, R. W. & Upton, B. G. J. 1991. The chemistry of zircon: variations within and between large crystals from a syenite and alkali basalt xenoliths. GEOCHIM COSMOCHIM ACTA 55, 3287–302.Google Scholar
Kinny, P. D., Williams, I. S., Froude, D. O., Ireland, T. R. & Compston, W. 1988. Early Archaean zircon ages from orthogneisses and anorthosites at Mount Narryer, Western Australia. PRECAMBRIAN RES 38, 325–41.Google Scholar
Kinny, P. D., Compston, W. & Williams, I. S. 1991. A reconnaissance ion-probe study of hafnium isotopes in zircons. GEOCHIM COSMOCHIM ACTA 55, 849–59.CrossRefGoogle Scholar
Krogh, T. E. 1986. Single zircon analysis and the provenance of Meguma and Spruce Brook sediments in eastern Canada. TERRA COGNITA 6, 152.Google Scholar
Mahood, G. & Hildreth, W. 1983. Large partition coefficients for trace elements in high-silica rhyolites. GEOCHIM COSMOCHIM ACTA 47, 1130.CrossRefGoogle Scholar
Miller, C. F., Watson, E. B. & Harrison, T. M. 1988. Perspectives on the source, segregation and transport of granitoid magmas. TRANS R SOC EDINBURGH EARTH SCI 79, 135–56.Google Scholar
Nagasawa, H. 1970. Rare earth concentrations in zircons and apatites and their host dacites and granites. EARTH PLANET SCI LETT 9, 359–64.CrossRefGoogle Scholar
Pasteels, P. 1970. Uranium-lead radioactive ages of monazite and zircon from the Vire-Carolles granite (Normandy). A case study of zircon-monazite discrepancy. ECLOGAE GEOL HELV 63, 231–37.Google Scholar
Paterson, B. A. 1990. Accessory mineral growth histories: implications for granitoid petrogenesis (Unpublished Ph.D. Thesis, University of St Andrews, St Andrews, Scotland, U.K.).Google Scholar
Paterson, B. A. & Stephens, W. E. 1992. Kinetically induced compositional zoning in titanite: implications for accessoryphase/melt partitioning of trace elements. CONTRIB MINERAL PETROL 109, 373–85.Google Scholar
Paterson, B. A., Stephens, W. E. & Herd, D. A. 1989. Zoning in granitoid accessory minerals as revealed by backscattered electron imagery. MIN MAG 53, 5561.CrossRefGoogle Scholar
Paterson, B. A., Rogers, G. & Stephens, W. E. 1992. Evidence for inherited Sm-Nd isotopes in granitoid zircons. CONTRIB MINERAL PETROL in press.CrossRefGoogle Scholar
Pettingill, H. S. & Patchett, P. J. 1981. Lu-Hf total-rock age for the Amîtsoq gneisses, West Greenland. EARTH PLANET SCI LETT 55, 150–6.CrossRefGoogle Scholar
Pidgeon, R. T. & Aftalion, M. 1978. Cogenetic and inherited zircon U-Pb systems in granites: Palaeozoic granites of Scotland and England. In Bowes, D. R. & Leake, B. E. (eds) Crustal evolution in Northwestern Britain and adjacent regions. GEOL J SPEC ISSUE 10, 183220.Google Scholar
Pupin, J. P. 1980. Zircon and granite petrology. CONTRIB MINERAL PETROL 73, 207–20.CrossRefGoogle Scholar
Robson, D. A. 1987. The persistence of zircons in the clastics of the sedimentary succession of northern Britain: an SEM study. In Marshall, J. R. (ed.) Clastic particles: scanning electron microscopy and shape analysis of sedimentary and volcanic clasts, 5164. New York: Van Nostrand Reinhold.Google Scholar
Rogers, G., Krogh, T. E., Bluck, B. J. & Kwok, Y. Y. 1990. Provenance ages of the Torridonian sandstone of NW Scotland using single grain U-Pb zircon analysis. GEOL SOC AUST ABSTR (ICOG 7) 27, 84.Google Scholar
Rogers, G. & Dunning, G. R. 1991. Geochronology of appinitic and related granitic magmatism in the W Highlands of Scotland: constraints on the timing of transcurrent fault movement. J GEOL SOC LONDON 148, 1727.CrossRefGoogle Scholar
Sabine, P. A. 1963. The Strontian granite complex, Argyllshire. BULL GEOL SURV GB 20, 642.Google Scholar
Schärer, U. & Allègre, C. J. 1982. Investigation of the Archaean crust by single-grain dating of detrital zircon in a graywacke of the Slave Province, Canada. CAN J EARTH SCI 94, 438–51.Google Scholar
Schärer, U. & Allègre, C. J. 1983. The Palung granite (Himalaya); high-resolution U-Pb systematics in zircon and monazite. EARTH PLANET SCI LETT 63, 423–32.CrossRefGoogle Scholar
Scott, V. D. & Love, G. 1983. Quantitative electron-probe microanalysis. Chichester: Ellis Horwood Limited.Google Scholar
Stille, P. & Steiger, R. H. 1991. Hf isotope systematics in granitoids from the central and southern Alps. CONTRIB MINERAL PETROL 107. 273–8.Google Scholar
Watson, E. B. & Harrison, T. M. 1983. Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types. EARTH PLANET SCI LETT 64, 295304.CrossRefGoogle Scholar
Watson, E. B. & Harrison, T. M. 1984. Accessory minerals and the geochemical evolution of crustal magmatic sytems: a summary and prospectus of experimental approaches. PHYS EARTH PLANET INT 35, 1930.CrossRefGoogle Scholar
Williams, I. S. & Claesson, S. 1987. Isotopic evidence for the Precambrian provenance and Caledonian metamorphism of the high grade paragneisses from the Seve Nappes, Scandinavian Caledonides. II. Ion microprobe zircon U-Th-Pb. CONTRIB MINERAL PETROL 97, 205–17.CrossRefGoogle Scholar
Williams, I. S., Chen, Y., Chappell, B. W. & Compston, W. 1988. Dating sources of Bega Batholith granites by ion microprobe. GEOL SOC AUST ABSTR 21, 424.Google Scholar
Zhang, Y., Walker, D. & Lesher, C. E. 1989. Diffusive crystal dissolution. CONTRIB MINERAL PETROL 102, 492513.CrossRefGoogle Scholar