Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-05-14T22:31:49.499Z Has data issue: false hasContentIssue false

Palaeo-climate and -topography of the continental orogen: Theoretical inversion with initial oxygen isotopes of ancient meteoric water

Published online by Cambridge University Press:  13 April 2023

Chun-Sheng WEI*
Affiliation:
CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China.
Zi-Fu ZHAO
Affiliation:
CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China.
*
*Corresponding author. Email: wchs@ustc.edu.cn

Abstract

Ancient environments have been mostly reconstructed with exogenous records, yet the potential constraints from endogenous archives were less emphasised. It has been well known that the outer- and inner-spheres of the planetary Earth are naturally linked and/or interplayed each other among geospheres. As stable isotopes of the meteoric water are globally dependent upon precipitating environments, rocks and/or minerals hydrothermally altered by the meteoric water can thus imprint environmental information of continental settings. These valuable clues, however, have been intuitively and/or qualitatively inferred up to now. On the basis of an innovative procedure recently proposed for dealing with thermodynamic re-equilibration of oxygen isotopes between constituent minerals and water from fossil hydrothermal systems, ancient meteoric waters are theoretically inverted from the early Cretaceous post-collisional granitoid and Triassic gneissic country rocks across the Dabie orogen in central-eastern China. The initial oxygen isotopes of ancient meteoric water (i.e., $\delta ^{18}O_W^i$ value hereafter) range from −11.01 ± 0.43 (one standard deviation, 1SD) to −7.61 ± 0.07‰ in this study, yet systematically and/or statistically deviating from modern local precipitation. These imply that either palaeoclimate could be colder than the present at least during the early Cretaceous or palaeoaltimetry has geographically varied across the Dabie orogen since the Triassic. Moreover, the lifetime of fossil hydrothermal systems is kinetically quantified to less than 1.2 million years (Myr) for the concurrent lowering of oxygen isotopes of hydrothermally altered rock-forming minerals through the surface-reaction oxygen exchange with ancient meteoric waters herein. Our results thus suggest that palaeoenvironments of the continental orogen can be scientifically and methodologically unearthed from endogenous archives and theoretical inversion of $\delta ^{18}O_W^i$ values can be quantitatively applied beyond the Dabie orogen.

Type
Spontaneous Article
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press on behalf of The Royal Society of Edinburgh

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

11. References

Alley, R. B. & Cuffey, K. M. 2001. Oxygen- and hydrogen-isotopic ratios of water in precipitation: Beyond paleothermometry. Reviews in Mineralogy and Geochemistry 43, 527–53.10.2138/gsrmg.43.1.527CrossRefGoogle Scholar
Ames, L., Zhou, G. Z. & Xiong, B. C. 1996. Geochronology and isotopic character of ultrahigh-pressure metamorphism with implications for collision of the Sino-Korean and Yangtze cratons, central China. Tectonics 15, 472–89.10.1029/95TC02552CrossRefGoogle Scholar
Amiot, R., Wang, X., Zhou, Z., Wang, X., Buffetaut, E., Lécuyer, C., Ding, Z., Fluteau, F., Hibino, T., Kusuhashi, N., Mo, J., Suteethorn, V., Wang, Y., Xu, X. & Zhang, F. 2011. Oxygen isotopes of East Asian dinosaurs reveal exceptionally cold Early Cretaceous climates. Proceedings of the National Academy of Sciences of the United States of America 108, 5179–83.10.1073/pnas.1011369108CrossRefGoogle ScholarPubMed
Anthony, J. W., Bideaux, R. A., Bladh, K. W. & Nichols, M. C. 2023. Handbook of Mineralogy. Chantilly, VA 20151-1110, USA: Mineralogical Society of America (online version http://www.handbookofmineralogy.org).Google Scholar
Bryant, D. L., Ayers, J. C., Gao, S., Miller, C. F. & Zhang, H. F. 2004. Geochemical, age, and isotopic constraints on the location of the Sino-Korean/Yangtze Suture and evolution of the Northern Dabie Complex, east central China. Geological Society of America Bulletin 116, 698717.10.1130/B25302.2CrossRefGoogle Scholar
Chacko, T., Cole, D. R. & Horita, J. 2001. Equilibrium oxygen, hydrogen and carbon isotope fractionation factors applicable to geologic systems. Reviews in Mineralogy and Geochemistry 43, 181.10.2138/gsrmg.43.1.1CrossRefGoogle Scholar
Chamberlain, C. P., Ibarra, D. E., Lloyd, M. K., Kukla, T., Sjostrom, D., Gao, Y. & Sharp, Z. D. 2020. Triple oxygen isotopes of meteoric hydrothermal systems-implications for palaeoaltimetry. Geochemical Perspectives Letters 15, 69.10.7185/geochemlet.2026CrossRefGoogle Scholar
Cheng, H., Zhang, C., Vervoort, J. D., Wu, Y. B., Zheng, Y. F., Zheng, S. & Zhou, Z. Y. 2011. New Lu–Hf geochronology constrains the onset of continental subduction in the Dabie orogen. Lithos 121, 4154.10.1016/j.lithos.2010.10.004CrossRefGoogle Scholar
Clayton, R. N. & Kieffer, S. W. 1991. Oxygen isotopic thermometer calibrations. Geochemical Society Special Publications 3, 310.Google Scholar
Cole, D. R., Ohmoto, H. & Jacobs, G. K. 1992. Isotopic exchange in mineral-fluid systems: III. Rates and mechanisms of oxygen isotope exchange in the system granite-H2O ± NaCl ± KC1 at hydrothermal conditions. Geochimica et Cosmochimica Acta 56, 445–66.10.1016/0016-7037(92)90144-8CrossRefGoogle Scholar
Cole, D. R., Ohmoto, H. & Lasaga, A. C. 1983. Isotopic exchange in mineral-fluid systems. I. Theoretical evaluation of oxygen isotopic exchange accompanying surface reactions and diffusion. Geochimica et Cosmochimica Acta 47, 1681–93.10.1016/0016-7037(83)90018-2CrossRefGoogle Scholar
Craig, H. 1961. Isotopic variations in meteoric water. Science 133, 1702–3.10.1126/science.133.3465.1702CrossRefGoogle Scholar
Criss, R. E. & Taylor, H. P. Jr. 1986. Meteoric-hydrothermal systems. Reviews in Mineralogy and Geochemistry 16, 373424.Google Scholar
Dai, L. Q., Zhao, Z. F. & Zheng, Y. F. 2015. Tectonic development from oceanic subduction to continental collision: geochemical evidence from postcollisional mafic rocks in the Hong'an-Dabie orogens. Gondwana Research 27, 1236–54.10.1016/j.gr.2013.12.005CrossRefGoogle Scholar
Dansgaard, W. 1964. Stable isotopes in precipitation. Tellus 16, 436–68.10.1111/j.2153-3490.1964.tb00181.xCrossRefGoogle Scholar
Deng, X., Yang, K. G., Polat, A., Kusky, T. M. & Wu, K. B. 2014. Zircon U–Pb ages, major and trace elements, and Hf isotope characteristics of the Tiantangzhai granites in the North Dabie orogen, Central China: tectonic implications. Geological Magazine 151, 916–37.10.1017/S0016756813000976CrossRefGoogle Scholar
Dickin, A. P. 2018. Radiogenic Isotope Geology, 3rd edn, 1482. Cambridge: Cambridge University Press.10.1017/9781316163009CrossRefGoogle Scholar
Ernst, W. G., Tsujimori, T., Zhang, R. Y. & Liou, J. G. 2007. Permo-Triassic collision, subduction-zone metamorphism, and tectonic exhumation along the East Asian continental margin. Annual Review of Earth and Planetary Sciences 35, 73110.10.1146/annurev.earth.35.031306.140146CrossRefGoogle Scholar
Faure, G. & Mensing, T. M. 2005. Isotopes: Principles and Applications, 3rd edn, 1897. Hoboken, NJ: Wiley.Google Scholar
Fortier, S. M. & Giletti, B. J. 1989. An empirical model for predicting diffusion coefficients in silicate minerals. Science 245, 1481–4.10.1126/science.245.4925.1481CrossRefGoogle ScholarPubMed
Fu, B., Kita, N. T., Wilde, S. A., Liu, X. C., Cliff, J. & Greig, A. 2013. Origin of the Tongbai-Dabie-Sulu Neoproterozoic low-δ18O igneous province, east-central China. Contributions to Mineralogy and Petrology 165, 641–62.10.1007/s00410-012-0828-3CrossRefGoogle Scholar
Galewsky, J., Steen-Larsen, H. C., Field, R. D., Worden, J., Risi, C. & Schneider, M. 2016. Stable isotopes in atmospheric water vapor and applications to the hydrologic cycle. Reviews of Geophysics 54, 809–65.10.1002/2015RG000512CrossRefGoogle Scholar
Gat, J. R. 1996. Oxygen and hydrogen isotopes in the hydrologic cycle. Annual Review of Earth and Planetary Sciences 24, 225–62.10.1146/annurev.earth.24.1.225CrossRefGoogle Scholar
Giletti, B. J., Semet, M. P. & Yund, R. A. 1978. Studies in diffusion – III. Oxygen in feldspars: An ion microprobe determination. Geochimica et Cosmochimica Acta 42, 4557.10.1016/0016-7037(78)90215-6CrossRefGoogle Scholar
Giletti, B. J. & Yund, R. A. 1984. Oxygen diffusion in quartz. Journal of Geophysical Research 89, 4039–46.10.1029/JB089iB06p04039CrossRefGoogle Scholar
Grambling, T. A., Jessup, M. J., Newell, D. L., Methner, K., Mulch, A., Hughes, C. A. & Shaw, C. A. 2022. Miocene to modern hydrothermal circulation and high topography during synconvergent extension in the Cordillera Blanca, Peru. Geology 50, 106–10.10.1130/G49263.1CrossRefGoogle Scholar
Hacker, B. R., Ratschbacher, L., Webb, L., Ireland, T., Walker, D. & Dong, S. W. 1998. U/Pb zircon ages constrain the architecture of the ultrahigh-pressure Qinling-Dabie orogen, China. Earth and Planetary Science Letters 161, 215–30.10.1016/S0012-821X(98)00152-6CrossRefGoogle Scholar
Hacker, B. R., Ratschbacher, L., Webb, L., McWilliams, M. O., Ireland, T., Calvert, A., Dong, S. W., Wenk, H. R. & Chateigner, D. 2000. Exhumation of ultrahigh-pressure continental crust in east central China: Late Triassic–Early Jurassic tectonic unroofing. Journal of Geophysical Research 105, 13339–64.10.1029/2000JB900039CrossRefGoogle Scholar
He, Y. S., Li, S. G., Hoefs, J. & Kleinhanns, I. C. 2013. Sr–Nd–Pb isotopic compositions of Early Cretaceous granitoids from the Dabie orogen: Constraints on the recycled lower continental crust. Lithos 156–159, 204–17.10.1016/j.lithos.2012.10.011CrossRefGoogle Scholar
Hoefs, J. 2021. Stable Isotope Geochemistry, 9th edn, 1504. Cham, Switzerland: Springer Nature Switzerland AG.10.1007/978-3-030-77692-3CrossRefGoogle Scholar
Jäger, E. & Hunziker, J. C. 1979. Lectures in Isotope Geology, 1329. Berlin, Heidelberg, New York: Springer-Verlag.10.1007/978-3-642-67161-6CrossRefGoogle Scholar
Jahn, B.-m., Conichet, J., Cong, B. L. & Yui, T. F. 1996. Ultrahigh-ɛNd(t) eclogites from an ultrahigh-pressure metamorphic terrane of China. Chemical Geology 127, 6179.10.1016/0009-2541(95)00108-5CrossRefGoogle Scholar
Jahn, B.-m., Wu, F. Y., Lo, C. H. & Tsai, C. H. 1999. Crustal–mantle interaction induced by deep subduction of the continental crust: Geochemical and Sr–Nd isotopic evidence from post-collisional mafic-ultramafic intrusions of the northern Dabie complex, central China. Chemical Geology 157, 119–46.CrossRefGoogle Scholar
Jasechko, S. 2019. Global isotope hydrogeology – review. Reviews of Geophysics 57, 835965.10.1029/2018RG000627CrossRefGoogle Scholar
Kieffer, S. W. 1982. Thermodynamics and lattice vibrations of minerals: 5, Applications to phase equilibria, isotopic fractionation, and high-pressure thermodynamic properties. Reviews of Geophysics 20, 827–49.10.1029/RG020i004p00827CrossRefGoogle Scholar
King, E. M., Barrie, C. T. & Valley, J. W. 1997. Hydrothermal alteration of oxygen isotope ratios in quartz phenocrysts, Kidd Creek mine, Ontario: Magmatic values are preserved in zircon. Geology 25, 1079–82.10.1130/0091-7613(1997)025<1079:HAOOIR>2.3.CO;22.3.CO;2>CrossRefGoogle Scholar
Kohn, M. J. 2007. Paleoaltimetry: Geochemical and Thermodynamic Approaches. Reviews in Mineralogy and Geochemistry 66, 1278.Google Scholar
Li, S. G., Jagoutz, E., Chen, Y. Z. & Li, Q. L. 2000. Sm–Nd and Rb–Sr isotopic chronology and cooling history of ultrahigh pressure metamorphic rocks and their country rocks at Shuanghe in the Dabie Mountains, Central China. Geochimica et Cosmochimica Acta 64, 1077–93.10.1016/S0016-7037(99)00319-1CrossRefGoogle Scholar
Li, S. G., Xiao, Y. L., Liu, D. L., Chen, Y. Z., Ge, N. J., Zhang, Z. Q., Sun, S.-s., Cong, B. L., Zhang, R. Y., Hart, S. R. & Wang, S. S. 1993. Collision of the North China and Yangtze Blocks and formation of coesite-bearing eclogites: Timing and processes. Chemical Geology 109, 89111.CrossRefGoogle Scholar
Liu, D. Y., Jian, P., Kröner, A. & Xu, S. T. 2006. Dating of prograde metamorphic events deciphered from episodic zircon growth in rocks of the Dabie-Sulu UHP complex, China. Earth and Planetary Science Letters 250, 650–66.CrossRefGoogle Scholar
Liu, Z. F., Tian, L. D., Chai, X. R. & Yao, T. D. 2008. A model-based determination of spatial variation of precipitation δ18O over China. Chemical Geology 249, 203–12.10.1016/j.chemgeo.2007.12.011CrossRefGoogle Scholar
Ma, C. Q., Li, Z. C., Ehlers, C., Yang, K. G. & Wang, R. J. 1998. A post-collisional magmatic plumbing system: Mesozoic granitoid plutons from the Dabieshan high-pressure and ultrahigh-pressure metamorphic zone, east-central China. Lithos 45, 431–56.10.1016/S0024-4937(98)00043-7CrossRefGoogle Scholar
Matthews, A., Goldsmith, J. R. & Clayton, R. N. 1983. On the mechanisms and kinetics of oxygen isotope exchange in quartz and feldspars at elevated temperatures and pressures. Geological Society of America Bulletin 94, 396412.10.1130/0016-7606(1983)94<396:OTMAKO>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Meng, Q. R., Li, S. Y. & Li, R. W. 2007. Mesozoic evolution of the Hefei basin in eastern China: Sedimentary response to deformations in the adjacent Dabieshan and along the Tanlu fault. Geological Society of America Bulletin 119, 897916.10.1130/B25931.1CrossRefGoogle Scholar
Miller, C. F., McDowell, S. M. & Mapes, R. W. 2003. Hot and cold granites? Implications of zircon saturation temperatures and preservation of inheritance. Geology 31, 529–32.10.1130/0091-7613(2003)031<0529:HACGIO>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Passey, B. H. & Levin, N. E. 2021. Triple oxygen isotopes in meteoric waters, carbonates, and biological apatites: Implications for continental paleoclimate reconstruction. Reviews in Mineralogy and Geochemistry 86, 429–62.10.2138/rmg.2021.86.13CrossRefGoogle Scholar
Pepin, N. C., Arnone, E., Gobiet, A., Haslinger, K., Kotlarski, S., Notarnicola, C., Palazzi, E., Seibert, P., Serafin, S., Schöner, W., Terzago, S., Thornton, J. M., Vuille, M. & Adler, C. 2022. Climate changes and their elevational patterns in the mountains of the world. Reviews of Geophysics 60, e2020RG000730.10.1029/2020RG000730CrossRefGoogle Scholar
Poage, M. A. & Chamberlain, C. P. 2001. Empirical relationships between elevation and the stable isotope composition of precipitation and surface waters: Considerations for studies of paleoelevation change. American Journal of Science 301, 115.CrossRefGoogle Scholar
Reiners, P. W., Carlson, R. W., Renne, P. R., Cooper, K. M., Granger, D. E., McLean, N. M. & Schoene, B. 2018. Geochronology and Thermochronology, 1464. Hoboken, NJ: Wiley.Google Scholar
Reiners, P. W. & Ehlers, T. A. 2005. Low-temperature Thermochronology: Techniques, Interpretations and Applications. Reviews in Mineralogy and Geochemistry 58, 1622.CrossRefGoogle Scholar
Rowley, D. B., Xue, F., Tucker, R. D., Peng, Z. X., Baker, J. & Davis, A. 1997. Ages of ultrahigh pressure metamorphism and protolith orthogneisses from the Central Dabie Shan: U/Pb zircon geochronology. Earth and Planetary Science Letters 155, 191203.CrossRefGoogle Scholar
Rumble, D., Giorgis, D., Oreland, T., Zhang, Z. M., Xu, H. F., Yui, T. F., Yang, J. S., Xu, Z. Q. & Liou, J. G. 2002. Low δ18O zircons, U–Pb dating, and the age of the Qinglongshan oxygen and hydrogen isotope anomaly near Donghai in Jiangsu province, China. Geochimica et Cosmochimica Acta 66, 2299–306.CrossRefGoogle Scholar
Schauble, E. A. & Young, E. D. 2021. Mass dependence of equilibrium oxygen isotope fractionation in carbonate, nitrate, oxide, perchlorate, phosphate, silicate, and sulfate minerals. Reviews in Mineralogy and Geochemistry 86, 137–78.CrossRefGoogle Scholar
Sheppard, S. M. F. 1986. Characterization and isotopic variations in natural waters. Reviews in Mineralogy and Geochemistry 16, 165–83.Google Scholar
Spicuzza, M. J., Valley, J. W. & McConnell, V. S. 1998. Oxygen isotope analysis of whole rock via laser fluorination: an air lock approach. Geological Society of America Abstracts with Programs 30, A80.Google Scholar
Surma, J., Assonov, S. & Staubwasser, M. 2021. Triple oxygen isotope systematics in the hydrologic cycle. Reviews in Mineralogy and Geochemistry 86, 401–28.10.2138/rmg.2021.86.12CrossRefGoogle Scholar
Taylor, H. P. Jr. 1971. Oxygen isotope evidence for large-scale interaction between meteoric ground waters and Tertiary granodiorite intrusions, Western Cascade Range, Oregon. Journal of Geophysical Research 76, 7855–74.CrossRefGoogle Scholar
Taylor, H. P. Jr. 1977. Water/rock interactions and the origin of H2O in granitic batholiths. Journal of the Geological Society of London 133, 509–58.10.1144/gsjgs.133.6.0509CrossRefGoogle Scholar
Taylor, H. P. Jr., O'Neil, J. R. & Kaplan, I. R. 1991. Stable Isotope Geochemistry: A Tribute to Samuel Epstein. Geochemical Society Special Publications 3, 1516.Google Scholar
Valley, J. W. & Cole, D. R. 2001. Stable Isotope Geochemistry. Reviews in Mineralogy and Geochemistry 43, 1662.Google Scholar
Valley, J. W. & Graham, C. M. 1996. Ion microprobe analysis of oxygen isotope ratios in quartz from Skye granite: Healed micro-cracks, fluid flow, and hydrothermal exchange. Contributions to Mineralogy and Petrology 124, 225–34.10.1007/s004100050188CrossRefGoogle Scholar
Valley, J. W., Kinny, P. D., Schulze, D. J. & Spicuzza, M. J. 1998. Zircon megacrysts from kimberlite: Oxygen isotope variability among mantle melts. Contributions to Mineralogy and Petrology 133, 111.10.1007/s004100050432CrossRefGoogle Scholar
Valley, J. W., Kitchen, N. E., Kohn, M. J., Niendorf, C. R. & Spicuzza, M. J. 1995. UWG-2, a garnet standard for oxygen isotope ratio: Strategies for high precision and accuracy with laser heating. Geochimica et Cosmochimica Acta 59, 5223–31.CrossRefGoogle Scholar
Valley, J. W., Taylor, H. P. Jr. & O'Neil, J. R. 1986. Stable Isotopes in High Temperature Geological Processes. Reviews in Mineralogy and Geochemistry 16, 1570.Google Scholar
Walther, J. V. & Wood, B. J. 1986. Fluid–Rock Interactions During Metamorphism, 1218. New York, Berlin, Heidelberg, Tokyo: Springer-Verlag.CrossRefGoogle Scholar
Wang, X. M., Liou, J. G. & Mao, H. K. 1989. Coesite-bearing eclogite from the Dabie Mountains in central China. Geology 17, 1085–8.10.1130/0091-7613(1989)017<1085:CBEFTD>2.3.CO;22.3.CO;2>CrossRefGoogle Scholar
Wang, Q., Wyman, D. A., Xu, J. F., Jian, P., Zhao, Z. H., Li, C. F., Xu, W. X., Ma, J. L. & He, B. 2007. Early Cretaceous adakitic granites in the Northern Dabie Complex, central China: implications for partial melting and delamination of thickened lower crust. Geochimica et Cosmochimica Acta 71, 2609–36.10.1016/j.gca.2007.03.008CrossRefGoogle Scholar
Watson, E. B. & Cherniak, D. J. 1997. Oxygen diffusion in zircon. Earth and Planetary Science Letters 148, 527–44.CrossRefGoogle Scholar
Wei, C. S. & Zhao, Z. F. 2017. Dual sources of water overprinting on the low zircon δ18O metamorphic country rocks: disequilibrium constrained through inverse modelling of partial reequilibration. Scientific Reports 7, 40334.CrossRefGoogle ScholarPubMed
Wei, C. S. & Zhao, Z. F. 2021. Theoretical inversion of the fossil hydrothermal systems with oxygen isotopes of constituent minerals partially re-equilibrated with externally infiltrated fluids. Earth and Environmental Science Transactions of the Royal Society of Edinburgh 112, 101–10.CrossRefGoogle Scholar
Wei, C. S. & Zhao, Z. F. 2022. Paradoxically lowered oxygen isotopes of hydrothermally altered minerals by an evolved magmatic water. Scientific Reports 12, 16213.10.1038/s41598-022-19921-yCrossRefGoogle ScholarPubMed
Wei, C. S., Zhao, Z. F. & Spicuzza, M. J. 2008. Zircon oxygen isotopic constraint on the sources of late Mesozoic A-type granites in eastern China. Chemical Geology 250, 115.CrossRefGoogle Scholar
Xu, H. J., Ma, C. Q., Zhang, J. F. & Ye, K. 2012. Early Cretaceous low-Mg adakitic granites from the Dabie orogen, eastern China: Petrogenesis and implications for destruction of the over-thickened lower continental crust. Gondwana Research 23, 190207.CrossRefGoogle Scholar
Xu, S. T., Okay, A. I., Ji, S. Y., Sengör, A. M. C., Su, W., Liu, Y. C. & Jiang, L. L. 1992. Diamond from the Dabie Shan metamorphic rocks and its implication for tectonic setting. Science 256, 80–2.Google Scholar
Xu, X. J., Zhao, Z. F., Zheng, Y. F. & Wei, C. S. 2005. Element and isotope geochemistry of Mesozoic intermediate-felsic rocks at Tianzhushan in the Dabie orogen. Acta Petrologica Sinica 21, 607–22. [In Chinese with English abstract.]Google Scholar
Xue, F., Rowley, D. B., Tucker, R. D. & Peng, Z. X. 1997. U–Pb zircon ages of granitoid rocks in the north Dabie complex, eastern Dabie Shan, China. Journal of Geology 105, 744–53.CrossRefGoogle Scholar
Ye, K., Cong, B. L. & Ye, D. N. 2000. The possible subduction of continental material to depths greater than 200 km. Nature 407, 734–6.CrossRefGoogle ScholarPubMed
Zakharov, D. O., Zozulya, D. R. & Colòn, D. P. 2023. Quantitative record of the Neoarchean water cycle from a 2.67 Ga magmatic-hydrothermal system, Fennoscandian Shield. Geology 51, 215–9.CrossRefGoogle Scholar
Zhang, H. F., Gao, S., Zhong, Z. Q., Zhang, B. R., Zhang, L. & Hu, S. H. 2002. Geochemical and Sr–Nd–Pb isotopic compositions of Cretaceous granitoids: Constraints on tectonic framework and crustal structure of the Dabieshan ultrahigh-pressure metamorphic belt, China. Chemical Geology 186, 281–99.10.1016/S0009-2541(02)00006-2CrossRefGoogle Scholar
Zhao, S. H., Hu, H. C., Tian, F. Q., Tie, Q., Wang, L. X., Liu, Y. L. & Shi, C. X. 2017. Divergence of stable isotopes in tap water across China. Scientific Reports 7, 43653.CrossRefGoogle ScholarPubMed
Zhao, Z. F., Zheng, Y. F., Wei, C. S. & Wu, Y. B. 2004. Zircon isotope evidence for recycling of subducted continental crust in post-collisional granitoids from the Dabie terrane in China. Geophysical Research Letters 31, L22602.10.1029/2004GL021061CrossRefGoogle Scholar
Zhao, Z. F., Zheng, Y. F., Wei, C. S. & Wu, Y. B. 2007. Post-collisional granitoids from the Dabie orogen in China: Zircon U–Pb age, element and O isotope evidence for recycling of subducted continental crust. Lithos 93, 248–72.10.1016/j.lithos.2006.03.067CrossRefGoogle Scholar
Zhao, Z. F., Zheng, Y. F., Wei, C. S. & Wu, F. Y. 2011. Origin of postcollisional magmatic rocks in the Dabie orogen: Implications for crust–mantle interaction and crustal architecture. Lithos 126, 99114.10.1016/j.lithos.2011.06.010CrossRefGoogle Scholar
Zhao, Z. F., Zheng, Y. F., Wei, C. S., Wu, Y. B., Chen, F. K. & Jahn, B.-m. 2005. Zircon U–Pb age, element and C–O isotope geochemistry of post-collisional mafic-ultramafic rocks from the Dabie orogen in east-central China. Lithos 83, 128.CrossRefGoogle Scholar
Zheng, Y. F. 1993. Calculation of oxygen isotope fractionation in anhydrous silicate minerals. Geochimica et Cosmochimica Acta 57, 1079–91.CrossRefGoogle Scholar
Zheng, Y. F. 2012. Metamorphic chemical geodynamics in continental subduction zones. Chemical Geology 328, 548.CrossRefGoogle Scholar
Zheng, Y. F. & Fu, B. 1998. Estimation of oxygen diffusivity from anion porosity in minerals. Geochemical Journal 32, 7189.CrossRefGoogle Scholar
Zheng, Y. F., Fu, B., Gong, B. & Li, L. 2003. Stable isotope geochemistry of ultrahigh pressure metamorphic rocks from the Dabie-Sulu Orogen in China: Implications for geodynamics and fluid regime. Earth-Science Reviews 62, 105–61.CrossRefGoogle Scholar
Zheng, Y. F., Wu, Y. B., Chen, F. K., Gong, B., Li, L. & Zhao, Z. F. 2004. Zircon U–Pb and oxygen isotope evidence for a large-scale 18O-depletion event in igneous rocks during the Neoproterozoic. Geochimica et Cosmochimica Acta 68, 4145–65.CrossRefGoogle Scholar
Zhou, T. X., Chen, J. F., Li, X. & Foland, K. A. 1992. 40Ar/39Ar isotopic dating of intrusions from Huoshan-Shucheng syenite zone. Anhui Geology 2, 411. [In Chinese with English abstract.]Google Scholar
Supplementary material: PDF

Wei and Zhao supplementary material

Table S1 and Figures S1-S4

Download Wei and Zhao supplementary material(PDF)
PDF 488.5 KB