Hostname: page-component-848d4c4894-4hhp2 Total loading time: 0 Render date: 2024-05-15T18:28:54.123Z Has data issue: false hasContentIssue false

Petrologic and thermal constraints on the origin of leucogranites in collisional orogens

Published online by Cambridge University Press:  26 July 2007

Peter I. Nabelek
Affiliation:
Department of Geological Sciences, University of Missouri-Columbia, Columbia, MO 65211, USA. e-mail: nabelekp@missouri.edu
Mian Liu
Affiliation:
Department of Geological Sciences, University of Missouri-Columbia, Columbia, MO 65211, USA.

Abstract

Leucogranites are typical products of collisional orogenies. They are found in orogenic terranes of different ages, including the Proterozoic Trans-Hudson orogen, as exemplified in the Black Hills, South Dakota, and the Appalachian orogen in Maine, both in the USA, and the ongoing Himalayan orogen. Characteristics of these collisional leucogranites show that they were derived from predominantly pelitic sources at the veining stages of deformation and metamorphism in upper plates of thickened crusts. Once generated, the leucogranite magmas ascended as dykes and were emplaced within shallower parts of their source sequences. In these orogenic belts, there was a strong connection between deformation, metamorphism and granite generation. However, the heat sources needed for partial melting of the source rocks remain controversial. Lack of evidence for significant intrusion of mafic magmas necessary to cause melting of upper plate source rocks suggests that leucogranite generation in collisional orogens is mainly a crustal process.

The present authors evaluate five types of thermal models which have previously been proposed for generating leucogranites in collisional orogens. The first, a thickened crust with exponentially decaying distribution of heat-producing radioactive isotopes with depth, has been shown to be insufficient for heating the upper crust to melting conditions. Four other models capable of raising the crustal temperatures sufficiently to initiate partial melting of metapelites in thickened crust include: (1) thick sequences of sedimentary rocks with high amounts of internal radioactive heat production; (2) decompression melting; (3) thinning of mantle lithosphere; and (4) shear-heating. The authors show that, for reasonable boundary conditions, shear-heating along crustal-scale shear zones is the most viable process to induce melting in upper plates of collisional orogens where pelitic source lithologies are usually located. The shear-heating model directly links partial melting to the deformation and metamorphism that typically precede leucogranite genera

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)