Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-05-21T04:55:06.171Z Has data issue: false hasContentIssue false

Physical interactions within a coupled climate model over the last glacial–interglacial cycle

Published online by Cambridge University Press:  03 November 2011

A. Berger
Affiliation:
Université Catholique de Louvain, Institut d'Astronomie et de Géophysique G. Lemaître, 2 Chemin du Cyclotron, B-1348 Louvain-la-Neuve, Belgium.
Th. Fichefet
Affiliation:
Université Catholique de Louvain, Institut d'Astronomie et de Géophysique G. Lemaître, 2 Chemin du Cyclotron, B-1348 Louvain-la-Neuve, Belgium.
H. Gallée
Affiliation:
Université Catholique de Louvain, Institut d'Astronomie et de Géophysique G. Lemaître, 2 Chemin du Cyclotron, B-1348 Louvain-la-Neuve, Belgium.
I. Marsiat
Affiliation:
Université Catholique de Louvain, Institut d'Astronomie et de Géophysique G. Lemaître, 2 Chemin du Cyclotron, B-1348 Louvain-la-Neuve, Belgium.
C. Tricot
Affiliation:
Université Catholique de Louvain, Institut d'Astronomie et de Géophysique G. Lemaître, 2 Chemin du Cyclotron, B-1348 Louvain-la-Neuve, Belgium.
J. P. van Ypersele
Affiliation:
Université Catholique de Louvain, Institut d'Astronomie et de Géophysique G. Lemaître, 2 Chemin du Cyclotron, B-1348 Louvain-la-Neuve, Belgium.

Abstract

A two-dimensional (2-D) seasonal model has been developed for simulating the transient response of the climate system to the astronomical forcing. The atmosphere is represented by a zonally averaged quasi-geostrophic model which includes accurate treatment of radiative transfer. The atmospheric model interacts with the other components of the climate system (ocean, sea-ice and land surface covered or not by snow and ice) through vertical fluxes of momentum, heat and humidity. The model explicitly incorporates surface energy balances and has snow and sea-ice mass budgets. The vertical profile of the upper-ocean temperature is computed by an interactive mixed-layer model which takes into account the meridional turbulent diffusion of heat. This model is asynchronously coupled to a model which simulates the dynamics of the Greenland, the northern American and the Eurasian ice sheets. Over the last glacial–interglacial cycle, the coupled model simulates climatic changes which are in general agreement with the low frequency part of deep-sea, ice and sea-level records. However, after 6000 yBP, the remaining ice volume of the Greenland and northern American ice sheets is overestimated in the simulation. The simulated climate is sensitive to the initial size of the Greenland ice sheet, to the ice-albedo positive feedback, to the precipitation-altitude negative feedback over the ice sheets, to the albedo of the aging snow and to the insolation increase, particularly at the southern edge of the ice sheets, which is important for their collapse or surge.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andersen, B. G. 1981. Late Weichselian ice sheets in Eurasia and Greenland. In Denton, G. H. & Hughes, T. J. (eds) The Last Great Ice Sheets, pp. 165. New York: Wiley-Interscience.Google Scholar
Barnola, J. M., Raynaud, D., Korotkevich, Y. S. & Lorius, C. 1987. Vostok ice core provides 160,000-year record of atmospheric CO2. NATURE 239, 408–14.CrossRefGoogle Scholar
Berger, A. 1976. Long-term variations of daily and monthly insolation during the last Ice Age. EOS 57, 254.Google Scholar
Berger, A. 1977. Support for the astronomical theory of climatic change. NATURE 268, 44–5.CrossRefGoogle Scholar
Berger, A. 1978a. Long term variations of daily insolations and Quaternary climatic changes. J. ATMOS. SCI. 35, 2362–7.2.0.CO;2>CrossRefGoogle Scholar
Berger, A. 1978b. Long-term variations of caloric insolation resulting from the Earth's orbital elements. QUATERN RES, 9, 139–67.CrossRefGoogle Scholar
Berger, A. 1979. Insolation signatures of Quaternary climatic changes. IL NUOVO CIMENTO 2C, 6387.CrossRefGoogle Scholar
Berger, A. 1984. Accuracy and frequencies stability of the Earth's orbital elements during the Quaternary. In Berger, A. L., Imbrie, J., Hays, J., Kukla, G. & Saltzman, B. (eds) Milankovitch and Climate, Part I, pp. 340, Dordrecht, Holland: Reidel Publ. Company.CrossRefGoogle Scholar
Berger, A. 1988. Milankovitch Theory and Climate. REV GEOPHYS 26, 624–57.CrossRefGoogle Scholar
Berger, A. 1989. Pleistocene climatic variability at astronomical frequencies. QUATERN INTERN 2, 114.CrossRefGoogle Scholar
Berger, A., Imbrie, J., Hays, J., Kukla, G. & Saltzman, B. 1984. Milankovitch and Climate. Dordrecht, Holland: Reidel Publ. Company.CrossRefGoogle Scholar
Berger, A. & Loutre, M. F. 1988. New insolation values for the climate of the last 10 million years. Sc. Report 1988/13. Institut d'Astronomie et de Géophysique G. Lemaître, Université Catholique de Louvain, Louvain-la-Neuve.Google Scholar
Berger, A., Loutre, M. F. & Laskar, J. 1988. Une nouvelle solution astronomique pour les 10 derniers millions d'années. Sc. Report 1988/14. Institut d'Astronomie et de Geophysique G. Lemaître, Université Catholique de Louvain, Louvain-la-Neuve.Google Scholar
Berger, A., Gallée, H., Fichefet, Th, Marsiat, I. & Tricot, Ch. 1989. Testing the astronomical theory with a coupled climate-ice sheet model. GLOBAL PLANET CHANGE (in press).CrossRefGoogle Scholar
Beryland, M. E. & Beryland, T. G. 1952. Determining the net long-wave radiation of the Earth with consideration of the effect of cloudiness. Isv. Akad. Nauk. SSR, Ser. Geofiz., 1.Google Scholar
Beryland, T. G., Strokina, L. A. & Greshnikova, L. Y. E. 1980. Zonal cloud distribution on the Earth. METEOROL GIDROL 3, 1523.Google Scholar
Birchfield, G. E., Weertman, J. & Lunde, A. T. 1981. A paleoclimate model of the Northern Hemisphere ice sheets. QUATERN RES 15, 126–42.CrossRefGoogle Scholar
Boulton, G. S., Smith, G. D., Jones, A. S. & Newsome, J. 1985. Glacial geology and glaciology of the last mid-latitude ice sheets. J GEOL SOC LOND 142, 447–74.CrossRefGoogle Scholar
Broccoli, A. J. & Manabe, S. 1987. The influence of continental ice, atmospheric CO2, and land albedo on the climate of the last glacial maximum. CLIM DYN 1, 87100.CrossRefGoogle Scholar
Broecker, W. S. 1982. Glacial to interglacial changes in ocean chemistry. PROG OCEANOG 11, 151–97.CrossRefGoogle Scholar
Broecker, W. S., Peteet, D. M. & Rind, D. 1985. Does the ocean-atmosphere system have more than one stable mode of operation? NATURE 315, 21–6.CrossRefGoogle Scholar
Chappell, J. & Shackelton, N. J. 1986. Oxygen isotopes and sea level. NATURE 324, 137–40.CrossRefGoogle Scholar
Chappellaz, J., Barnola, J. M., Raynaud, D., Korotkevich, Y. S. & Lorius, C. 1989. Ice-core record of atmospheric methane over the last 160000 years. NATURE 345, 127–31.CrossRefGoogle Scholar
Danard, M., Gray, M. & Lyv, G. 1984. A model for predicting ice accretion and ablation in water bodies. MONTH WEATH REV 112, 1160–9.2.0.CO;2>CrossRefGoogle Scholar
Dansgaard, W., Clausen, H. B., Gundestrup, N., Hammer, C. U., Johnsen, S. F., Kristinsdottir, P. M. & Reeh, N. 1982. A new Greenland deep ice core. SCIENCE 218, 1273–7.CrossRefGoogle ScholarPubMed
Dansgaard, W., White, J. W. C. & Johnsen, S. J. 1989. The abrupt termination of the younger dryas climate event. NATURE 33, 532–34.CrossRefGoogle Scholar
Duplessy, J. Cl., Labeyrie, L. & Blanc, P. L. 1988. Norwegian sea deep water variations over the last climatic cycle: paleooceanographical implications. In Wanner, H. & Siegenthaler, U. (eds) Long and Short Term Variability of Climate pp. 83116, Earth Science Series. Berne: Springer Verlag.CrossRefGoogle Scholar
Dyke, A. S. & Prest, V. K. 1987. Late Wisconsinan and Holocene history of the Laurentide ice sheet. GÉOGRAPH PHYS QUATER 41, 237–63.CrossRefGoogle Scholar
Fichefet, Th., Tricot, Ch., Berger, A.Gallée, H. & Marsiat, I. 1989. Climate studies with a coupled atmosphere–upper ocean-ice sheets model. PHIL TRANS R SOC LOND A239, 249–61.Google Scholar
Fischer, D. A., Reeh, N. & Langley, K. 1985. Objective reconstructions of the late Wisconsinan Laurentide Ice Sheet and the significance of deformable beds. GÉOGRAPH PHYS QUATERN 39, 229–38.CrossRefGoogle Scholar
Gallée, H.van Ypersele, J. P., Fichefet, Th., Marsiat, I., Tricot, Ch. & Berger, A. 1989a. Simulation of the last glacial cycle by a coupled 2-D climate–ice sheet model. Part (1): The climate model. Scientific Report 1989/1, Institut d'Astronomie et de Géophysique G. Lemaître, Université Catholique de Louvain. Louvain-la-Neuve.Google Scholar
Gallée, J., van Ypersele, J. P., Fichefet, Th., Marsiat, I., Tricot, Ch. & Berger, A. 1989b. Simulation of the last glacial cycle by a coupled 2-D climate–ice sheet model. Part 2: Response to insolation and CO2 variations. Scientific Report 1989/3, Institut d'Astronomie et de Géophysique G. Lemaître, Université Catholique de Louvain-la-Neuve.Google Scholar
Gaspar, Ph. 1988. Modeling the seasonal cycle of the upper ocean. J PHYS OCEANOGR 18, 161–80.2.0.CO;2>CrossRefGoogle Scholar
Genthon, C., Barnola, J. M., Raynaud, D., Lorius, D., Jouzel, J., Barkov, N. I. & Korotkevitch, Y. S. 1987. Vostok ice core: climatic response to CO2 and orbital forcing changes over the last climatic cycle. NATURE 239, 414–18.CrossRefGoogle Scholar
Harvey, L. D. 1988. A semianalytic energy balance climate model with explicit sea ice and snow physics. J CLIM 1, 1065–85.2.0.CO;2>CrossRefGoogle Scholar
Harvey, L. D. D. & Schneider, S. H. 1985a. Transient climate response to external forcing on 100–144 year time scales, part 1. Experiment with globally averaged, coupled, atmosphere and ocean energy balance models. J ATMOS SCI 90, 2191–206.Google Scholar
Harvey, L. D. D. & Schneider, S. H. 1985b. Transient climate response to external forcing on 100–144 year time scales, part 2. Experiments with a seasonal, hemispherically averaged, coupled atmosphere land and ocean energy balance model. J ATMOS SCI 90, 2207–22.Google Scholar
Hays, J., Imbrie, J. & Shackleton, N. J. 1976. Variations in the Earth's orbit: Pacemaker of the Ice Ages. SCIENCE 194, 1121–32.CrossRefGoogle ScholarPubMed
Hughes, T. J., Denton, G. H., Anderson, B. G., Schiling, D. H., Fasthook, J. L. & Lingle, C. S. 1981. The last great ice sheets: a global view. In Denton, G. H. & Hughes, T. J. (eds) The Last Great Ice Sheets, pp. 275315. New York: Wiley Interscience Publ.Google Scholar
Hutter, K. 1983. Theoretical Glaciology. Dordrecht, Holland: Reidel Publishing Company.CrossRefGoogle Scholar
Huybrechts, Ph. 1989. The Antarctic ice sheet during the last glacial–interglacial cycle: a 3-D model experiment. Communication presented at the Symposium on Ice and Climate, Seattle, 21–25 August 1989 and submitted for publication in Annals of glaciology.Google Scholar
Hyde, W. T. & Peltier, W. R. 1985. Sensitivity with a model of the ice age cycle: The response to harmonic forcing. J ATMOS SCI 42, 2170–88.2.0.CO;2>CrossRefGoogle Scholar
Hyde, W. T. & Peltier, W. R. 1987. Sensitivity experiments with a model of the Ice Age cycle: the response to Milankovitch forcing. J ATMOS SCI 44, 1351–74.2.0.CO;2>CrossRefGoogle Scholar
Imbrie, J., Hays, J., Martinson, D. G., McIntyre, A., Mix, A. C., Morley, J. J., Pisias, N. G., Prell, W. L. & Shackelton, N. J. 1984. The orbital theory of Pleistocene climate: support from a revised Chronology of the marine δ18O record. In Berger, A. L., Irabrie, J., Hays, J., Kukla, G. & Saltzman, B. (eds) Milankovitch and Climate, pp. 269305, Dordrecht, Holland: Reidel Publ. Company.Google Scholar
Jaeger, L. 1976. Monatskarten des niederschlags für die ganze Erde. Ber. Deutsch. Wetterdienstes 139, Offenbach 38pp.Google Scholar
Koerner, R. M. 1989. Ice core evidence for extensive melting of the Greenland ice sheet in the Last Interglacial. SCIENCE 244, 964–8.CrossRefGoogle ScholarPubMed
Kukla, G. 1978. Recent changes in snow and ice. In Gribbin, J. (ed.) Climatic Change, pp. 114–29. Cambridge: Cambridge University Press.Google Scholar
Kutzbach, J. 1985. Modelling of paleoclimates. ADV GEOPHYS 28A, 159–96.CrossRefGoogle Scholar
Kutzbach, J. E. & Gallimore, R. G. 1988. Sensitivity of a coupled atmosphere/mixed layer ocean model to changes in orbital forcing at 9000 years BP. J GEOPHYS RES D1, 803–21.CrossRefGoogle Scholar
Labeyrie, L. D., Duplessy, J. Cl. & Blanc, P. L. 1987. Variations in mode of formation and temperature of oceanic deep waters over the past 125,000 years. NATURE 327, 477–82.CrossRefGoogle Scholar
Lamarque, J. F. 1988. A 2-D atmospheric model, the Eddy heat flux parameterization. Prog. report 1988/3, Institut d'Astronomie et de Géophysique G. Lemaître, Université Catholique de Louvain, Louvain-la-Neuve.Google Scholar
Ledley, T. A. S. 1983. A study of climate sensitivity using energy balance cryospheric models. Ph.D. Thesis, Univ. Massachusetts.Google Scholar
Lorius, Cl., Jouzel, J., Ritz, C., Merlivat, L., Barkov, N. I., Kofogkevich, Y. S. & Kotlyakov, V. M. 1985. A 150,000-year climatic record from Antarctic ice. NATURE 316, 591–6.CrossRefGoogle Scholar
Lorius, Cl., Barkov, N. I., Jouzel, J., Korotkevitch, Y. S., Kotlyakov, V. M. & Raynaud, D. 1988. Antarctic ice core: CO2 and climatic change over the last climatic cycle. EOS 69, 681, 683–4.CrossRefGoogle Scholar
Lorius, Cl., Jouzel, J., Raynaud, D., Hansen, J. & Le Treut, H. 1989. The ice-core record: climate sensitivity and future greenhouse warming. NATURE 347, 139–45.CrossRefGoogle Scholar
Manabe, S. & Broccoli, A. 1985. A comparison of climate model sensitivity with data from the last glacial maximum. J ATMOS SCI 42, 2643–51.2.0.CO;2>CrossRefGoogle Scholar
Mangerud, J. (in press). The last glacial history of Scandinavia between the last interglacial and the last glacial maximum. In Frenzel, B. (ed.) The Beginning of an Inland Glaciation—Facts and Problems of Climate Dynamics. Proceedings Mainz Symposium. Palaoklimafoschung, 1. Akademie der Wissenschaften und der Literatur Mainz, Gustav Fisher Verlag, Stuttgart, New York.Google Scholar
Marsiat, I. & Berger, A. 1990. On the relationship between ice volume and sea level over the last glacial cycle. CLIM DYN 4(2), 81–4.CrossRefGoogle Scholar
Martinson, D. G., Pisias, N. G., Hays, J. D., Imbrie, J., Moore, T. C. & Shackelton, N. J. 1987. Age dating and the orbital theory of the ice ages: development of a high-resolution 0 to 300,000-year chronostratigraphy. QUATERN RES 27, 129.CrossRefGoogle Scholar
Mason, B. J. 1976. Towards the understanding and prediction of climatic variations. Symons Memorial Lecture. QJR METEOROL SOC 102, 473–99.CrossRefGoogle Scholar
Maykut, G. A. & Church, P. E. 1973. Radiation climate of Barrow, Alaska, 1962–66. J APPL METEOROL 12, 620–7.2.0.CO;2>CrossRefGoogle Scholar
Milankovitch, M. 1941. Kanon der Erdbestrahlung und seine Anwendung auf das Eiszeitenproblem. Royal Serbian Sciences, Spec. pub. 132, section of Mathematical and Natural Sciences, Vol. 33, Belgrade, 633 pp. (‘Canon of Insolation and the Ice Age Problem’. English Translation by Israël Program for Scientific Translation and published for the U.S. Department of Commerce and the National Science Foundation, Washington D.C., 1969.)Google Scholar
Mitchell, J. F. B., Senior, C. A. & Ingram, W. J. 1989. CO2 and climate: a missing feedback? NATURE 341, 132–4.CrossRefGoogle Scholar
Morcrette, J. J. 1984. Sur la paramétrisation du rayonnement dans les modèles de la circulation général de l'atmosphère. Thèse de Doctorat d'Etat, Université des Sciences et des Techniques de Lille, 630, 373 pp.Google Scholar
Nakada, M. & Lambeck, K. 1988. The melting history of the late Pleistocene Antarctic ice sheet. NATURE 333, 3640.CrossRefGoogle Scholar
Neeman, B. U., Ohring, G., & Joseph, J. H. 1988a. The Milankovitch theory and climate sensitivity, 1, equilibrium climate model solutions for present surface conditions. J GEOPHY RES 93, 11.15311.174.CrossRefGoogle Scholar
Neeman, B. U., Ohring, G. & Joseph, J. H. 1988b. The Milankovitch theory and climate sensitivity, 2, interaction between the Northern Hemisphere ice sheets and the climate system. J GEOPHYS RES 93, 11.17511.191.CrossRefGoogle Scholar
Neftel, A., Oeschger, H., Schwander, J., Stauffer, B. & Zumbrunn, R. 1982. Ice core sample measurements give atmospheric CO2 content during the past 40,000 yr. NATURE 295, 220–3.CrossRefGoogle Scholar
North, G. R., Mengel, J. G. & Short, D. A. 1983. Simple energy balance model resolving the seasons and the continents application to the astonomical theory of the Ice Ages. J GEOPHYS RES 88, 6576–86.CrossRefGoogle Scholar
Oerlemans, J. 1980. Model experiments on the 100,000–yr glacial cycle. NATURE 287, 430–2.CrossRefGoogle Scholar
Oerlemans, J. 1982. Response of the Antarctic ice sheet to a climate warming: a model study. J CLIMATOL 2, 111.CrossRefGoogle Scholar
Oerlemans, J. & Van der Veen, C. J. 1984. Ice Sheets and Climate. Dordrecht, Holland: D. Reidel Publ. Comp.CrossRefGoogle Scholar
Ohring, G. & Adler, S. 1978. Some experiments with a zonally averaged climate model. J ATMOS SCI 35, 186205.Google Scholar
Otterman, J., Chou, M. D. & Arking, A. 1984. Effects of nontropical forest cover on climate. J APPL METEOROL 23, 762–7.2.0.CO;2>CrossRefGoogle Scholar
Ou, S. C. & Liou, K. N. 1984. A two-dimensional radiation-turbulence climate model. I. Sensitivity to cirrus radiative properties. AM METEOROL SOC 41, 2289–309.Google Scholar
Parkinson, C. L. & Washington, W. M. 1979. A large-scale numerical model of sea ice. J GEOPHYS RES 84, 311–36.CrossRefGoogle Scholar
Paterson, W. S. B. 1981. The Physics of Glaciers. 2nd Edn. Oxford: Pergamon Press.Google Scholar
Pearman, G. I., Etheridge, D., de Silva, F. & Fraser, P. J. 1986. Evidence of changing concentrations of atmospheric CO2, N2O and CH4 from air bubbles in Antarctic ice. NATURE 320, 248–50.Google Scholar
Peltier, W. R. 1982. Dynamics of the ice-age Earth. ADV GEOPHYS 24, 1146.CrossRefGoogle Scholar
Peng, L., Chou, M. D. & Arking, A. 1982. Climate studies with a multi-layer energy balance model, 1. Model description and sensitivity to the solar constant. J ATMOS SCI 39, 2639–56.2.0.CO;2>CrossRefGoogle Scholar
Peng, L., Chou, M. D. & Arking, A. 1987. Climate warming due to increasing atmospheric CO2: simulations with a multi layer coupled atmosphere–ocean seasonal energy balance model. J GEOPHYS RES 92, 5505–21.CrossRefGoogle Scholar
Pollard, D. 1983. A coupled climate ice-sheet model applied to the Quaternay ice ages. J GEOPHYS RES 88, 7705–18.CrossRefGoogle Scholar
Pollard, D. 1984. Some ice-age aspects of a calving ice-sheet model. In Berger, A. L., Imbrie, J., Hays, J., Kukla, G. & Saltzman, B. (eds) Milankovitch and Climate, pp. 541–64. Dordrecht, Holland: Reidel Publ. Company.CrossRefGoogle Scholar
Prell, W. L. & Kutzbach, J. E. 1987. Monsoon variability over the past 150,000 years. J GEOPHYS RES 92, 8411–25.CrossRefGoogle Scholar
Ramanathan, V., Cess, R. D., Harrison, E. F., Minnis, P., Barrkstrom, B. R., Ahmad, E. & Hartman, D. 1989. Cloud-radiative forcing and climate: results from the Earth radiation budget experiment. SCIENCE 243, 5763.CrossRefGoogle ScholarPubMed
Raynaud, D., Chappellaz, J., Barnola, J. M., Korotkevich, Y. S. & Lorius, E. 1988. Climatic and CH4 cycle implications of glacial-interglacial CH4 change in the Vostok ice core. NATURE 333, 655–65.CrossRefGoogle Scholar
Rind, D. 1986. The dynamics of warm and cold climates. J ATMOS SCI 43, 324.2.0.CO;2>CrossRefGoogle Scholar
Rind, D. & Rossow, W. B. 1984. The effects of physical processes on the Hadley circulation. J ATMOS SCI 41, 479507.2.0.CO;2>CrossRefGoogle Scholar
Robock, A. 1980. The seasonal cycle of snow cover, sea ice and surface albedo. MONTH WEATH REV 108, 267–85.2.0.CO;2>CrossRefGoogle Scholar
Ruddiman, W. F. & McIntyre, A. 1979. Warmth of the subpolar North Atlantic Ocean during northern hemisphere ice-sheet growth. SCIENCE 204, 173–5.CrossRefGoogle ScholarPubMed
Ruddiman, W. F. & McIntyre, A. 1981. Oceanic mechanisms for amplification of the 23,000-year ice-volume cycle. SCIENCE 212, 617–27.CrossRefGoogle ScholarPubMed
Ruddiman, W. F. & Duplessy, J. C. 1985. Conference on the last deglaciation: timing and mechanism. QUATERN REV 23, 117.CrossRefGoogle Scholar
Ruddiman, W. F. & Raymo, M. E. 1988. Northern Hemisphere climates regimes during the last 3 Myr: possible tectonic forcing. PHIL TRANS R SOC LOND B318, 411–30.Google Scholar
Saltzman, B. 1980. Parametrization of the vertical flux of latent heat at the Earth's surface for use in statistical-dynamical climate models. ARCH MET GEOPHYS BIOKL (Ser. A) 29, 4154.CrossRefGoogle Scholar
Saltzman, B. 1987. Carbon dioxide and the δ18O record of late-quaternary climatic change: a global model. CLIM DYN 1, 7785.CrossRefGoogle Scholar
Saltzman, B. & Ashe, Q. 1976. The variance of surface temperature due to diurnal and cyclone-scale forcing. TELLUS 28, 307–22.CrossRefGoogle Scholar
Saltzman, B., Hansen, A. R. & Maasch, K. A. 1984. The late Quaternary glaciations as a response of a three component feedback system to Earth-orbital forcing. J ATMOS SCI 41, 3380–9.2.0.CO;2>CrossRefGoogle Scholar
Schneider, S., Peteet, D. M. & North, G. R. 1987. A climatic model intercomparison for the Younger Dryas and its implications for paleoclimatic data collection. In Berger, W. H. & Labeyrie, L. (eds) Abrupt Climatic Change, pp. 399417. Dordrecht, Holland: Reidel Publ. Company.CrossRefGoogle Scholar
Schlesinger, M. 1988. How to make models for behaviour of clouds. NATURE 336, 315–16.CrossRefGoogle Scholar
Semtner, A. J. Jr. 1976. A model for the thermodynamic growth of sea ice in numerical investigations of climate. J PHYS OCEANOGR 6, 379–89.2.0.CO;2>CrossRefGoogle Scholar
Shackleton, N. J. & Opdyke, N. D. 1973. Oxygen isotope and paleomagnetic stratigraphy of Equatorial Pacific core V28–238: oxygen isotope temperatures and ice volumes on a 105 years and 106 years scale. QUATERN RES 3, 3955.CrossRefGoogle Scholar
Smith, W. L. 1966. Note on the relationship between total precipitable water and surface dew point. J APPL METEOROL 5, 726–7.2.0.CO;2>CrossRefGoogle Scholar
Stauffer, B., Lochbronner, E., Oeschger, H. & Schwander, J. 1988. Methane concentration in the glacial atmosphere was only half that of the preindustrial Holocene. NATURE 332, 812–4.CrossRefGoogle Scholar
Stone, P. H. & Yao, M. S. 1987. Development of two-dimensional zonally averaged statistical-dynamical model. Part II: the role of Eddy momentum fluxes in the general circulation and their parameterization. J ATMOS SCI 44, 3769–86.2.0.CO;2>CrossRefGoogle Scholar
Stone, P. H. & Yao, M. S. 1989. Development of a two-dimensional zonally averaged statistical-dynamical model. Part III: the parameterization of the eddy fluxes of heat and moisture. Preprint.2.0.CO;2>CrossRefGoogle Scholar
Suarez, M. J. & Held, I. M. 1976. Modelling climatic response to orbital parameter variations. NATURE 263, 46–7.CrossRefGoogle Scholar
Suarez, M. J. & Held, I. M. 1979. The sensitivity of an energy balance climate model to variations in the orbital parameters. J. GEOPHYS RES 84, 4825–36.CrossRefGoogle Scholar
Thompson, S. L. & Warren, S. G. 1982. Parameterization of the outgoing infrared radiation derived from detailed radiative calculations. J ATMOS SCI 39, 2667–80.2.0.CO;2>CrossRefGoogle Scholar
Tricot, Ch. 1989. The transient response of climate to greenhouse gas concentration changes: a preliminary study with a two-dinsional coupled atmosphere-ocean model. Prog, report 1989/4, Institut d'Astronomie et de Géophysique G. Lemaître, Université de Louvain, Louvain-la-Neuve.Google Scholar
Tricot, Ch. & Berger, A. 1988. Sensitivity of present-day climate to astronomical forcing. In Wanner, H. & Siegenthaler, U. (eds) Long and Short Term Variability of Climate, pp. 132–52, Earth Science Series. Berne: Springer Verlag.CrossRefGoogle Scholar
Tricot, Ch., Gallée, H., Fichefet, Th., Marsisat, I. & Berger, A. 1989. A simulation of the long-term variations of the global ice volume over the past 122,000 years: a test of the astronomical theory. In Lenoble, J. & Geleyn, J. F. (eds) IRS'88: Current Problems in Atmospheric Radiation, pp. 338–41. Hampton, Virginia: A. Deepak Publishing.Google Scholar
Warren, S. G. & Schneider, S. H. 1979. Seasonal simulation as a test for uncertainties in the parameterizations of a Budiko-Sellers zonal climate model. J ATMOS SCI 36, 1377–91.2.0.CO;2>CrossRefGoogle Scholar
Weertman, J. 1973. Creep of ice. In Whalley, E., Jones, S. J. & Gold, L. W. (eds) Physics and Chemistry of Ice. Ottawa: Royal Soc. of Canada.Google Scholar
Wetherald, R. D., & Manabe, S. 1988. Cloud feedback processes in a general circulation model. J ATMOS SCI 45, 13971415.2.0.CO;2>CrossRefGoogle Scholar
White, A. A. & Green, J. S. A. 1984. Transfer coefficient eddy flux parameterization in a simple model of the zonal average atmospheric circulations. QUATER J R METEOROL SOC 110, 1035–52.CrossRefGoogle Scholar
Wigley, T. M. L. 1976. Spectral analysis and astronomical theory of climatic change. NATURE 264, 629–31.CrossRefGoogle Scholar
Yao, M. S. & Stone, P. H. 1987. Development of a two-dimensional zonally averaged statistical-dynamical model. Part I: The parameterization of moist convection and its role in the general circulation. J ATMOS SCI 44, 4364.2.0.CO;2>CrossRefGoogle Scholar