Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-05-21T17:34:24.580Z Has data issue: false hasContentIssue false

A reappraisal of the Dinantian floras at Oxroad Bay, East Lothian, Scotland. 1. Floristics and the development of whole-plant concepts

Published online by Cambridge University Press:  03 November 2011

Richard M. Bateman
Affiliation:
Geology Department, Royal Holloway and Bedford New College (University of London), Egham, Surrey, TW20 0EX, England.
Gar W. Rothwell
Affiliation:
Botany Department, Ohio University, Athens, Ohio 45701, U.S.A.

Abstract

Re-investigation of species-rich late Tournaisian floras at Oxroad Bay reveals eight plant-bearing exposures that represent four distinct stratigraphic levels. The allochthonous megafossil assemblages vary in degrees of disarticulation, modes of preservation and taxonomic composition. Within-site stratigraphic distributions are presented for 43 anatomically-preserved organ-species; of these, 12 are new to science, 18 have not previously been recorded at the locality, 21 are illustrated from the locality for the first time and 19 are currently considered endemic. Another six have been recorded in error from unprovenanced water-worn blocks. Nineteen adpressed organ-species are also described. Methods and concepts of whole-plant reconstruction are reviewed. At least 11 whole-plant species occur at Oxroad Bay. The lycopsids comprise an enigmatic plant with an Asteroxylon-like stele and two morphologically- and ecologically-distinct species of Oxroadia. A new species of Protocalamites demonstrates the earliest evidence of heterospory and tuberoid stem-bases in the sphenopsid clade. Cladoxylon and Stauropteris represent the pteropsids. At least five lyginopterid pteridosperm species are present. They include both trees (Eristophyton, Bilignea) and shrubs/pseudoherbs (e.g. Tetrastichia and the Triradioxylon–Calathopteris–Oxroadopteris–‘Tristichia’ plexus), suggesting a range of life strategies. Their diversity has complicated attempts to reconstruct whole-plants, though attachment is demonstrated between several ovules and cupules, and several ovules and pollen-organs are correlated using shared microspores. Elements of particular evolutionary significance include the ‘megacupule’ Calathospermum and a structurally similar pollen-organ aggregate, a bisexual Pullaritheca cupule, and a complete ontogenetic sequence of Hydrasperma ovules. Comparable Dinantian floras are reviewed.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alvin, K. L. 1965. A new fertile lycopod from the Lower Carboniferous of Scotland. PALAEONTOLOGY 8, 281–93.Google Scholar
Alvin, K. L. 1966. Two cristate megaspores from the Lower Carboniferous of Scotland. PALAEONTOLOGY 9, 488–91.Google Scholar
Alvin, K. L. 1985. Obituary: Peter David Weiste Barnard, 1932–1984. INTERN ORG PALAEOBOT NEWSL 26, 910.Google Scholar
Andrews, H. N. 1940a. On the stelar anatomy of the pteridosperms, with particular reference to the secondary wood. ANN MO BOT GDN 27, 51118.Google Scholar
Andrews, H. N. 1940b. A new cupule from the Lower Carboniferous of Scotland. BULL TORREY BOT CLUB 67, 595601.Google Scholar
Andrews, H. N. 1948. Some evolutionary trends in pteridosperms. BOT GAZ 110, 1331.CrossRefGoogle Scholar
Banks, H. P. 1960. Notes on Devonian lycopods. SENCKENBERGIANA 41, 5988.Google Scholar
Barnard, P. D. W. 1959. On Eosperma oxroadense gen. et spec. nov.; a new Lower Carboniferous seed from East Lothian. ANN BOT (NS) 23, 285–96.Google Scholar
Barnard, P. D. W. 1960a. Studies on some Lower Carboniferous plants from East Lothian. PhD thesis, London University.Google Scholar
Barnard, P. D. W. 1960b. Calathospermum fimbriatum sp. nov., a Lower Carboniferous pteridosperm cupule from Scotland. PALAEONTOLOGY 3, 265–75.Google Scholar
Barnard, P. D. W. 1962. Revision of the genus Amyelon Williamson. PALAEONTOLOGY 5, 213–24.Google Scholar
Barnard, P. D. W. & Long, A. G. 1973. On the structure of a petrified stem and some associated seeds from the Lower Carboniferous rocks of East Lothian, Scotland. TRANS R SOC EDINBURGH 69, 91108.CrossRefGoogle Scholar
Barnard, P. D. W. & Long, A. G. 1975. Triradioxylon—a new genus of Lower Carboniferous petrified stems and petioles, together with a review of the classification of early Pterophytina. TRANS R SOC EDINBURGH 69, 231–49.Google Scholar
Bateman, R. M. 1988. Palaeobotany and palaeoenvironments of Lower Carboniferous floras from two volcanigenic terrains in the Scottish Midland Valley. PhD thesis, London University.Google Scholar
Bateman, R. M. subm. Palaeobiological and phylogenetic implications of anatomically-preserved archaeocalamites from the Dinantian of Oxroad Bay and Loch Humphrey Burn, southern Scotland. PALAEONTOGRAPHICA B.Google Scholar
Bateman, R. M. & Cleal, C. J. in press. Loch Humphrey Burn. In Thomas, B. A. (ed) Geological Conservation Review, Palaeobotany.Google Scholar
Bateman, R. M., Rothwell, G. W. & Cleal, C. J. in press. Oxroad Bay. In Thomas, B. A. (ed) Geological Conservation Review, Palaeobotany.Google Scholar
Bateman, R. M. & Scott, A. C. 1990. A reappraisal of the Dinantian floras at Oxroad Bay, East Lothian, Scotland. 2. Volcanicity, palaeoenvironments and palaeoecology. TRANS R SOC EDINBURGH 81, 161–94.CrossRefGoogle Scholar
Behrensmeyer, A. K. & Kidwell, S. M. 1985. Taphonomy's contributions to paleobiology. PALEOBIOLOGY 11, 105–19.Google Scholar
Bengtson, P. 1988. Open nomenclature. PALAEONTOLOGY 31, 223–7.Google Scholar
Benson, M. 1914. Sphaerostoma ovale, a Lower Carboniferous ovule from Pettycur, Scotland. TRANS R SOC EDINBURGH 50, 115.Google Scholar
Bridge, J. S., Veen, T. M. Van & Matten, L. C. 1980. Aspects of the sedimentology, palynology and palaeobotany of the Upper Devonian of southern Kerry Head, Co. Kerry, Ireland. GEOL J 15, 143–70.CrossRefGoogle Scholar
Brongniart, A. 1828. Histoire des végétaux fossiles en reserches botaniques et géologiques sur les végétaux renfermés dans les diverses couches des globe. Paris: Dufour.Google Scholar
Calder, M. G. 1935. Further observations on the genus Lyginorachis Kidston. TRANS R SOC EDINBURGH 58, 549–59.CrossRefGoogle Scholar
Chaloner, W. G. 1986. Reassembling the whole plant, and naming it. In Spicer, R. A. & Thomas, B. A. (eds) Systematic and Taxonomic Approaches in Palaeobotany, 6778. Oxford: Clarendon Press.Google Scholar
Chaphekar, M. 1963. Some calamitean plants from the Lower Carboniferous of Scotland. PALAEONTOLOGY 6, 408–29.Google Scholar
Cleal, C. J. 1984. The Westphalian D floral biostratigraphy of Saarland (Fed. Rep. Germany) and a comparison with that of South Wales. GEOL J 19, 327–51.Google Scholar
Cleal, C. J. in press. The conservation of palaeobotanical sites in Britain. SPEC PAP PALAEONT.Google Scholar
Cope, M. J. & Chaloner, W. G. 1985. Wildfire: An interaction of biological and physical processes. In Tiffney, B. H. (ed) Geological Factors and the Evolution of Plants, 257–77. New Haven: Yale University Press.Google Scholar
Crookall, R. 1932. The stratigraphical distribution of British Lower Carboniferous plants. SUMM PROG GEOL SURV (1931), 70104.Google Scholar
Crookall, R. 19551976. Fossil plants of the Carboniferous rocks of Great Britain (second section). MEM GEOL SURV GT BR 4 (1–7).Google Scholar
Day, T. C. 1928. The volcanic vents on the shore between North Berwick and Tantallon Castle. TRANS EDINB GEOL SOC 12, 4152.Google Scholar
Doyle, J. A. & Donoghue, M. J. 1986a. Relationships of angiosperms and gnetales: a numerical cladistic analysis. In Spicer, R. A. & Thomas, B. T. (eds) Systematic and Taxonomic Approaches in Palaeobotany, 177–98. Oxford: Clarendon Press.Google Scholar
Doyle, J. A. & Donoghue, M. J. 1986b. Seed plant phytogeny and the origin of the angiosperms: an experimental cladistic approach. BOT REV 52, 321431.Google Scholar
Eggert, D. A. 1961. Ontogeny of the Carboniferous arborescent lycopsida. PALAEONTOGRAPHICA B 108, 4392.Google Scholar
Eggert, D. A. & Taylor, T. N. 1971. Telangiopsis gen. nov., an Upper Mississippian pollen organ from Arkansas. BOT GAZ 132, 30–7.CrossRefGoogle Scholar
Galtier, J. 1986. Taxonomic problems due to preservation: comparing compression and permineralised taxa. In Spicer, R. A. & Thomas, B. A. (eds) Systematic and Taxonomic Approaches in Palaeobotany, 116. Oxford: Clarendon Press.Google Scholar
Galtier, J. 1987. Gymnospermous vegetative patterns in the Early Carboniferous (Symposium 5.29: Evolution of early seed plants). In Greuter, W., Zimmer, B. & Behnke, H.-D. (eds) Abstracts of the 14th International Botanical Congress (Berlin, 1987), 282.Google Scholar
Galtier, J. 1988. Morphology and phylogenetic relationships of early pteridosperms. In Beck, C. B. (ed) Origin and Evolution of Gymnosperms, 135–76. New York: Columbia Univ. Press.Google Scholar
Galtier, J. & Scott, A. C. in press. On Eristophyton and other gymnosperms from the Lower Carboniferous of Castleton Bay, East Lothian, Scotland. Geobios.Google Scholar
Gordon, W. T. 1927. The coastal strip between North Berwick and Cheese Bay, Gullane. PROC GEOL ASS 38, 441–6.Google Scholar
Gordon, W. T. 1935. The genus Pitys Witham emend. TRANS R SOC EDINBURGH 58, 279311.Google Scholar
Gordon, W. T. 1938. On Tetrastichia bupatides—a Carboniferous pteridosperm from East Lothian. TRANS R SOC EDINBURGH 59, 351–70.Google Scholar
Gordon, W. T. 1941. On Salpingostoma dasu: a new Carboniferous seed from East Lothian. TRANS R SOC EDINBURGH 60, 427–64.Google Scholar
Grierson, J. D. & Bonamo, P. M. 1979. Leclercqia complexa: the earliest ligulate lycopod (Middle Devonian). AM J BOT 66, 474–6.Google Scholar
Jennings, J. R. 1976. The morphology and relationships of Rhodea, Telangium, Telangiopsis and Heterangium. AM J BOT 63, 1119–33.CrossRefGoogle Scholar
Joy, K. W., Willis, A. J. & Lacey, W. S. 1956. A rapid cellulose peel technique in palaeobotany. ANN BOT (NS) 20, 635–7.Google Scholar
Kidston, R. 1887. Fructifications of some ferns from the Carboniferous Formation. TRANS R SOC EDINBURGH 33, 137–58.CrossRefGoogle Scholar
Kidston, R. 1923. Lyginorachis papilio. In Scott, D. H.Studies in Fossil Botany, 3rd edn, 5760. London: Black.Google Scholar
Kidston, R. 19231925. Fossil plants of the Carboniferous rocks of Great Britain MEM GEOL SURV GT BR (Palaeontology) 2.Google Scholar
Kidston, R. & Gwynne-Vaughan, D. T. 1912. On the Carboniferous flora of Berwickshire, 1. Stenomyelon tuedianum Kidston. TRANS R SOC EDINBURGH 48, 263–71.Google Scholar
Kidston, R. & Lang, W. H. 1920. On Old Red Sandstone plants showing structure from the Rhynie Chert Bed, Aberdeenshire, 3. Asteroxylon mackiei Kidston & Lang. TRANS R SOC EDINBURGH 52, 643680.CrossRefGoogle Scholar
Knoll, A. H. & Rothwell, G. W. 1981. Paleobotany: perspectives in 1980. PALEOBIOLOGY 7, 735.CrossRefGoogle Scholar
Kräusel, R. & Weyland, H. 1926. Beitrage zur Kenntnis der Devonflora II. ABH SENCKENB NATURFORSCH GES 40, 115–55.Google Scholar
Kryshtofovich, A. 1944. The mode of preservation of plant fossils and its bearing on the problem of coal. AM J SCI 242, 5773.CrossRefGoogle Scholar
Lacey, W. S. 1953. Scottish Lower Carboniferous plants: Eristophyton waltoni sp. nov. and Endoxylon zonatum (Kidston) Scott from Dumbartonshire. ANN BOT (NS) 17, 579–96.Google Scholar
Leclercq, S. 1970. Classe des Cladoxylopsida Pichi-Sermoli 1959. In Boureau, E. (ed) Traité de Paléobotanique, 4. Paris: Masson.Google Scholar
Leclercq, S. & Banks, H. P. 1962. Pseudosporochnus nodosus sp. nov., a Middle Devonian plant with cladoxylalean affinities. PALAEONTOGRAPHICA B 110, 134.Google Scholar
Leclercq, S. & Bonamo, P. M. 1971. A study of the fructification of Milleria (Protopteridium) thomsonii from the Middle Devonian of Belgium. PALAEONTOGRAPHICA B 136, 83114.Google Scholar
Long, A. G. 1960a. On the structure of Calymmatotheca kidstoni Calder (emended) and Genomosperma latens gen. et spec. nov. from the Calciferous Sandstone Series of Berwickshire. TRANS R SOC EDINBURGH 64, 2944.CrossRefGoogle Scholar
Long, A. G. 1960b. Stamnostoma huttonense gen. et spec. nov.—a pteridosperm seed and cupule from the Calciferous Sandstone Series of Berwickshire. TRANS R SOC EDINBURGH 64, 201–15.Google Scholar
Long, A. G. 1960c. On the structure of Samaropsis scotica (emended) and Eurystoma angulare gen. et spec, nov., petrified seeds from the Calciferous Sandstone Series of Berwickshire. TRANS R SOC EDINBURGH 64, 261–80.Google Scholar
Long, A. G. 1961a. On the structure of Deltasperma fouldenense gen. et spec. nov. and Camptosperma berniciense gen. et spec. nov., petrified seeds from the Calciferous Sandstone Series of Berwickshire. TRANS R SOC EDINBURGH 64, 281–95.CrossRefGoogle Scholar
Long, A. G. 1961b. Some pteridosperm seeds from the Calciferous Sandstone Series of Berwickshire. TRANS R SOC EDINBURGH 64, 401–19.Google Scholar
Long, A. G. 1961c. Tristichia ovensi gen. et spec, nov., a protostelic Lower Carboniferous pteridosperm from Berwickshire and East Lothian, with an account of some associated seeds and cupules. TRANS R SOC EDINBURGH 64, 477–89.Google Scholar
Long, A. G. 1963. Some specimens of Lyginorachis papilio Kidston associated with stems of Pitys. TRANS R SOC EDINBURGH 65, 211–24.CrossRefGoogle Scholar
Long, A. G. 1964. A petrified Lower Carboniferous Lepidodendron showing rooting organs identified with Calamopsis Solms-Laubach. TRANS R SOC EDINBURGH 66, 3548.Google Scholar
Long, A. G. 1965. On the cupule structure of Eurystoma angulare. TRANS R SOC EDINBURGH 66, 111–28.CrossRefGoogle Scholar
Long, A. G. 1966. Some Lower Carboniferous fructifications from Berwickshire, together with a theoretical account of the evolution of ovules, cupules and carpels. TRANS R SOC EDINBURGH 66, 345–75.Google Scholar
Long, A. G. 1967. Some specimens of Protoclepsydropsis and Clepsydropsis from the Calciferous Sandstone Series of Berwickshire. TRANS R SOC EDINBURGH 67, 95106.Google Scholar
Long, A. G. 1968. Some specimens of Cladoxylon from the Calciferous Sandstone Series of Berwickshire. TRANS R SOC EDINBURGH 68, 4561.CrossRefGoogle Scholar
Long, A. G. 1969. Eurystoma trigona sp. nov., a pteridosperm ovule borne on a frond of Alcicornopteris Kidston. TRANS R SOC EDINBURGH 68, 171–82.CrossRefGoogle Scholar
Long, A. G. 1971. A new interpretation of Lepidodendron calamopsoides Long and Oxroadia gracilis Alvin. TRANS R SOC EDINBURGH 68, 491506.Google Scholar
Long, A. G. 1975. Further observations on some Lower Carboniferous seeds and cupules. TRANS R SOC EDINBURGH 69, 267–93.Google Scholar
Long, A. G. 1976. Calathopteris heterophylla gen. et spec, nov., a Lower Carboniferous pteridosperm bearing two kinds of petioles. TRANS R SOC EDINBURGH 69, 329–36.Google Scholar
Long, A. G. 1977a. Some Lower Carboniferous pteridosperm cupules bearing ovules and microsporangia. TRANS R SOC EDINBURGH 70, 111.Google Scholar
Long, A. G. 1977b. Lower Carboniferous pteridosperm cupules and the origin of the angiosperms. TRANS R SOC EDINBURGH 70, 1335.Google Scholar
Long, A. G. 1979a. Observations on the Lower Carboniferous genus Pitus Witham. TRANS R SOC EDINBURGH 70, 111–27.Google Scholar
Long, A. G. 1979b. The resemblance between the Lower Carboniferous cupules Hydrasperma cf. tenuis Long and Sphenopteris bifida Lindley & Hutton. TRANS R SOC EDINBURGH 70, 129–37.Google Scholar
Long, A. G. 1984. Oxroadopteris parvus gen. et spec, nov.: a protostelic Lower Carboniferous pteridosperm from Oxroad Bay, East Lothian, Scotland. TRANS R SOC EDINBURGH 75, 383–9.Google Scholar
Long, A. G. 1985. The cupule-carpel theory: a defence. PROC R SOC EDINBURGH 86, 289301.Google Scholar
Long, A. G. 1986. Observations on the Lower Carboniferous lycopod Oxroadia gracilis Alvin. TRANS R SOC EDINBURGH 77, 127–42.Google Scholar
Long, A. G. 1987. Observations on Eristophyton Zalessky, Lyginorachis waltoni Calder, and Cladoxylon edromense sp. nov. from the Lower Carboniferous Cementstone Group of Scotland. TRANS R SOC EDINBURGH 78, 7384.CrossRefGoogle Scholar
Matten, L. C. & Lacey, W. S. 1981. Cupule organisation in early seed plants. In Romans, R. C. (ed) Geobotany II, 221–34. New York: Plenum.Google Scholar
Matten, L. C., Lacey, W. S. & Edwards, D. 1975. Discovery of one of the oldest gymnosperm floras containing cupulate seeds. PHYTOLOGIA 32, 299303.Google Scholar
Matten, L. C., Lacey, W. S. & Lucas, R. C. 1980a. Studies on the cupulate seed genus Hydrasperma Long from Berwickshire and East Lothian in Scotland and County Kerry in Ireland. BOT J LINN SOC 81, 249–73.Google Scholar
Matten, L. C., Lacey, W. S., May, B. I. & Lucas, R. C. 1980b. A megafossil flora from the Uppermost Devonian near Ballyheigue, Co. Kerry, Ireland. REV PALAEOBOT PALYNOL 29, 241–51.Google Scholar
Matten, L. C., Fine, T. I., Tanner, W. R. & Lacey, W. S. 1984a. The megagametophyte of Hydrasperma tenuis Long from the Upper Devonian of Ireland. AM J BOT 71, 1461–4.Google Scholar
Matten, L. C., Tanner, W. R. & Lacey, W. S. 1984b. Additions to the silicified Upper Devonian/Lower Carboniferous flora from Ballyheigue, Ireland. REV PALAEOBOT PALYNOL 43, 303–20.Google Scholar
May, B. I. & Matten, L. C. 1983. A probable pteridosperm from the Uppermost Devonian near Ballyheigue, Co. Kerry, Ireland. REV PALAEOBOT PALYNOL 29, 241–51.Google Scholar
Meyer-Berthaud, B. 1986. Melissiotheca: a new pteridosperm pollen organ from the Lower Carboniferous of Scotland. BOT J LINN SOC 93, 277–90.CrossRefGoogle Scholar
Meyer-Berthaud, B. 1989. First gymnosperm fructifications with trilete prepollen. PALAEONTOGRAPHICA B 211, 87112.Google Scholar
Meyer-Berthaud, B. & Galtier, J. 1986. Studies on a Lower Carboniferous flora from Kingswood, near Pettycur, Scotland. II. Phacelotheca, a new synangiate fructification of pteridospermous affinities. REV PALAEOBOT PALYNOL 48, 181–98.CrossRefGoogle Scholar
Milky, M. A. & Taylor, T. N. 1979. Palaeozoic seed fern pollen organs. BOT REV 45, 301–75.Google Scholar
Oliver, F. W. & Scott, D. H. 1904. On the structure of the Palaeozoic seed Lagenostoma lomaxi, with a statement of the evidence upon which it is referred to Lyginodendron. PHIL TRANS R SOC LOND B 231, 193247.Google Scholar
Pettitt, J. M. 1969. Pteridophytic features in some Lower Carboniferous seed megaspores. BOT J LINN SOC 62, 233–9.Google Scholar
Retallack, G. J. 1985. Reconstructions of Scottish Early Carboniferous seed ferns. AM J BOT 72, 898.Google Scholar
Retallack, G. J. & Dilcher, D. L. 1988. Reconstructions of selected seed ferns. ANN MO BOT GDN 75, 1010–57.Google Scholar
Rex, G. M. & Scott, A. C. 1987. The sedimentology, palaeoecology and preservation of the Lower Carboniferous plant deposits at Pettycur, Fife, Scotland. GEOL MAG 124, 4366.Google Scholar
Rothwell, G. W. 1980. A technique for revealing the surface features of permineralised “coal-ball” plants. J PALEONT 54, 1131–3.Google Scholar
Rothwell, G. W. 1985. The role of comparative morphology and anatomy in interpreting the systematics of fossil gymnosperms. BOT REV 51, 319–27.Google Scholar
Rothwell, G. W. 1986. Classifying the earliest gymnosperms. In Spicer, R. A. & Thomas, B. A. (eds) Systematic and Taxonomic Approaches in Palaeobotany, 137–61. Oxford: Clarendon Press.Google Scholar
Rothwell, G. W. & Erwin, D. M. 1987. Origin of seed plants: an aneurophyte/seed-fern link elaborated. AM J BOT 74, 970–3.Google Scholar
Rothwell, G. W. & Scheckler, S. E. 1988. Biology of ancestral gymnosperms. In Beck, C. B. (ed) Origin and Evolution of Gymnosperms, 86134. New York: Columbia Univ. Press.Google Scholar
Rothwell, G. W. & Scott, A. C. 1985. Ecology of Lower Carboniferous plant remains from Oxroad Bay, East Lothian, Scotland. AM J BOT 72, 899.Google Scholar
Rothwell, G. W. & Wight, D. C. 1987. Taxonomic diversity among Devonian and Lower Carboniferous fructifications with Hydrasperma tenuis-iype ovules. AM J BOT 74, 688.Google Scholar
Rothwell, G. W. & Wight, D. C. 1988. Lower Carboniferous ovulate branching systems from Oxroad Bay, Scotland; a new species of Stamnostoma. AM J BOT 75, 115–6.Google Scholar
Rothwell, G. W. & Wight, D. C. 1989. Pullaritheca longii gen. nov. and Kerryia mattenii gen. et spec, nov., Lower Carboniferous cupules with ovules of the Hydrasperma tenuis-type. REV PALAEOBOT PALYNOL 60, 295309.Google Scholar
Rowe, N. P. 1988. New observations on the Lower Carboniferous pteridosperm Diplopteridium Walton and an associated synangiate organ. BOT J LINN SOC 97, 125–38.Google Scholar
Schopf, J. M. 1975. Modes of fossil preservation. REV PALAEOBOT PALYNOL 20, 2753.CrossRefGoogle Scholar
Schopf, J. M. 1978. Unstated requirements in nomenclature for plant fossils. TAXON 27, 485–8.Google Scholar
Schweitzer, H. J. & Giesen, P. 1980. Uber Taeniophyton inopinatum, Protolycopodites devonicus und Cladoxylon scoparium aus dem Mitteldevon von Wuppertal. PALAEONTOGRAPHICA B 173, 125.Google Scholar
Scott, A. C. in press. Preservation, evolution and extinction of plants in Lower Carboniferous volcanic sequences in Scotland. In Lockley, M. & Rice, A. (eds) Volcanism and Fossil Biotas. Geol. Soc. Am. Spec. Paper.Google Scholar
Scott, A. C. & Collinson, M. E. 1978. Organic sedimentary particles: results from the SEM of sedimentary particles. In Whalley, W. B. (ed) SEM and the Study of Sediments, 137–67. Norwich: Geoabstracts.Google Scholar
Scott, A. C. & Galtier, J. 1988. A new Lower Carboniferous flora from East Lothian, Scotland. PROC GEOL ASS 99, 141–51.Google Scholar
Scott, A. C. & Rex, G. M. 1987. The accumulation and preservation of Dinantian plants from Scotland and its borders. In Miller, J., Adams, A. E. & Wright, V. P. (eds) European Dinantian Environments, 329–44. New York: Wiley.Google Scholar
Scott, A. C. & Meyer-Berthaud, B. 1985. Plants from the Dinantian of Foulden, Berwickshire, Scotland. TRANS R SOC EDINBURGH 76, 1320.Google Scholar
Scott, A. C., Galtier, J. & Clayton, G. 1984. Distribution of anatomically-preserved floras in the Lower Carboniferous of Western Europe. TRANS R SOC EDINBURGH 75, 311–40.Google Scholar
Scott, A. C., Galtier, J. & Clayton, G. 1985. A new late Tournaisian (Lower Carboniferous) flora from the Kilpatrick Hills, Scotland. REV PALAEOBOT PALYNOL 44, 8199.CrossRefGoogle Scholar
Scott, A. C., Meyer-Berthaud, B., Galtier, J., Rex, G. M., Brindley, S. A. & Clayton, G. 1986. Studies on a new Lower Carboniferous flora from Kingswood, near Pettycur, Scotland. 1. Preliminary report. REV PALAEOBOT PALYNOL 48, 161–80.Google Scholar
Scott, D. H. 1924. Fossil plants of the Calamopitys type from the Carboniferous rocks of Scotland. TRANS R SOC EDINBURGH 53, 569–96.Google Scholar
Shute, C. H. & Cleal, C. J. 1987. Palaeobotany in museums. GEOL CURATOR 4, 553–9.CrossRefGoogle Scholar
Smith, D. L. 1962. Three fructifications from the Scottish Lower Carboniferous. PALAEONTOLOGY 5, 225–37.Google Scholar
Smith, D. L. 1964a. Two Scottish Lower Carboniferous floras. TRANS PROC BOT SOC EDINB 39, 460–6.Google Scholar
Smith, D. L. 1964b. The evolution of the ovule. BIOL REV 39, 137–59.CrossRefGoogle Scholar
Solms-Laubach, H. G. 1897. Über die in den Kalkstein des Culm von Glätzisch-Falkenberg. BOT ZEIT 2, 219–26.Google Scholar
Spinner, E. 1984. Further studies on the megaspore genus Setispora Butterworth & Spinner 1967. POLLEN SPORES 24, 301–13.Google Scholar
Stewart, W. N. 1983. Palaeobotany and the Evolution of Plants. Cambridge: Cambridge Univ. Press.Google Scholar
Wagner, R. H. 1984. Megafloral zones of the Carboniferous. C R 9me CONG INT STRAT GÉOL CARB (Urbana 1979) 2, 109–34.Google Scholar
Walton, J. 1931. Contributions to knowledge of Lower Carboniferous plants, III. PHIL TRANS R SOC LOND B 219, 347–79.Google Scholar
Walton, J. 1949a. On Lower Carboniferous Equisetinae from the Clyde area. TRANS R SOC EDINBURGH 61, 729–43.Google Scholar
Walton, J. 1949b. A petrified example of Alcicornopteris (A. hallei sp. nov.) from the Lower Carboniferous of Dumbartonshire. ANN BOT (NS) 13, 445–52.Google Scholar
Walton, J. 1953. Evolution of the ovule in the pteridosperms. ADVMT SCI LOND 10, 223–30.Google Scholar
Walton, J. 1957. On Protopitys Goeppert, with a description of a fertile specimen P. scotica sp. nov. from the Calciferous Sandstone series of Dumbartonshire. TRANS R SOC EDINBURGH 63, 333–40.Google Scholar
Walton, J. & Long, A. G. 1964. Excursion S7: Scottish Palaeozoic. 10th INT BOT CONGR (Edinburgh), 117.Google Scholar
Walton, J., Weir, J. & Leitch, D. 1938. A summary of Scottish Carboniferous stratigraphy and palaeontology. CONG ADV ÉTUD STRAT CARB (Heerlen, 1935), 1343–56.Google Scholar
Wight, D. C. 1987a. Stelar morphology of early seed plants. AM J BOT 74, 693.Google Scholar
Wight, D. C. 1987b. Primary vascular architecture of progymnosperms and its bearing on evolutionary relations within the group and with early gymnosperms (Symposium 5.29: Evolution of early seed plants). In Greuter, W., Zimmer, B. & Behnke, H.-D. (eds) Abstracts of the 14th International Botanical Congress (Berlin, 1987), 283.Google Scholar
Wight, D. C., Rothwell, G. W. & Scott, A. C. 1986. Structural variation among gymnosperms with triradiate steles from Oxroad Bay, southeast Scotland. AM J BOT 73, 714–5.Google Scholar
Zalessky, M. D. 1911. Étude sur l'anatomie du Dadoxylon tchihatcheffi Geoppert sp. MEM COMITÉ GEOL RUSSE (NS) 68, 1829.Google Scholar