Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-06-03T20:28:27.925Z Has data issue: false hasContentIssue false

Existence and non-existence of solutions to the coboundary equation for measure-preserving systems

Published online by Cambridge University Press:  04 July 2022

TERRY ADAMS*
Affiliation:
Department of Mathematics and Statistics, State University of New York, Albany, NY 12222, USA
JOSEPH ROSENBLATT
Affiliation:
Department of Mathematics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA (e-mail: rosnbltt@illinois.edu)
*

Abstract

A fundamental question in the field of cohomology of dynamical systems is to determine when there are solutions to the coboundary equation:

$$ \begin{align*} f = g - g \circ T. \end{align*} $$

In many cases, T is given to be an ergodic invertible measure-preserving transformation on a standard probability space $(X, {\mathcal B}, \mu )$ and is contained in $L^p$ for $p \geq 0$ . We extend previous results by showing for any measurable f that is non-zero on a set of positive measure, the class of measure-preserving T with a measurable solution g is meager (including the case where $\int _X f\,d\mu = 0$ ). From this fact, a natural question arises: given f, does there always exist a solution pair T and g? In regards to this question, our main results are as follows. Given measurable f, there exist an ergodic invertible measure-preserving transformation T and measurable function g such that $f(x) = g(x) - g(Tx)$ for almost every (a.e.) $x\in X$ , if and only if $\int _{f> 0} f\,d\mu = - \int _{f < 0} f\,d\mu $ (whether finite or $\infty $ ). Given mean-zero $f \in L^p(\mu )$ for $p \geq 1$ , there exist an ergodic invertible measure-preserving T and $g \in L^{p-1}(\mu )$ such that $f(x) = g(x) - g( Tx )$ for a.e. $x \in X$ . In some sense, the previous existence result is the best possible. For $p \geq 1$ , there exists a dense $G_{\delta }$ set of mean-zero $f \in L^p(\mu )$ such that for any ergodic invertible measure-preserving T and any measurable g such that $f(x) = g(x) - g(Tx)$ almost everywhere, then $g \notin L^q(\mu )$ for $q> p - 1$ . Finally, it is shown that we cannot expect finite moments for solutions g, when $f \in L^1(\mu )$ . In particular, given any such that $\lim _{x\to \infty } \phi (x) = \infty $ , there exist mean-zero $f \in L^1(\mu )$ such that for any solutions T and g, the transfer function g satisfies:

$$ \begin{align*} \int_{X} \phi ( | g(x) | )\,d\mu = \infty. \end{align*} $$

Type
Original Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aaronson, J.. An Introduction to Infinite Ergodic Theory (Mathematical Surveys and Monographs, 50). American Mathematical Society, Providence, RI, 1997.10.1090/surv/050CrossRefGoogle Scholar
Adams, T. and Rosenblatt, J.. Joint coboundaries, dynamical systems, ergodic theory, and probability: in memory of Kolya Chernov. Contemp. Math. 698 (2017), 534.10.1090/conm/698/14034CrossRefGoogle Scholar
Alonso, A. I., Hong, J. and Obaya, R.. Absolutely continuous dynamics and real coboundary cocycles in ${L}^p$ -spaces, $0<p<\infty$ . Studia Math. 138 (2000), 121134.Google Scholar
Anosov, D. V.. On an additive functional homology equation connected with an ergodic rotation of the circle. Math. USSR Izvestija 7(6) (1973), 12571271.10.1070/IM1973v007n06ABEH002086CrossRefGoogle Scholar
Baggett, L., Medina, H. and Merrill, K.. On functions that are trivial cocycles for a set of irrationals, II. Proc. Amer. Math. Soc. 124(1) (1996), 8993.10.1090/S0002-9939-96-02990-5CrossRefGoogle Scholar
Ber, A., Borst, M. and Sukochev, F.. Full proof of Kwapień’s theorem on representing bounded mean zero functions on $\left[0,1\right]$ . Studia Math. 259 (2021), 241270.10.4064/sm191129-31-8CrossRefGoogle Scholar
Birkhoff, G. D.. Proof of the ergodic theorem. Proc. Natl. Acad. Sci. USA 17 (1931), 656660.10.1073/pnas.17.2.656CrossRefGoogle ScholarPubMed
Browder, F. E.. On the iteration of transformations in noncompact minimal dynamical systems. Proc. Amer. Math. Soc. 9(5) (1958), 773780.10.1090/S0002-9939-1958-0096975-9CrossRefGoogle Scholar
Cassels, J. W. S.. An Introduction to Diophantine Approximation. Cambridge University Press, London, 1957.Google Scholar
Cohen, G. and Lin, M.. Double coboundaries for commuting transformations. Appl. Funct. Anal. 2(1) (2017), 1136.Google Scholar
Danilenko, A. I. and Silva, C. E.. Ergodic Theory: Non-singular Transformations (Mathematics of Complexity and Dynamical Systems). Springer, New York, NY, 2012.Google Scholar
Derriennic, Y. and Lin, M.. Fractional Poisson equations and ergodic theorems for fractional coboundaries. Israel J. Math. 123 (2001), 93130.10.1007/BF02784121CrossRefGoogle Scholar
Dotson, W. G. Jr. An application of ergodic theory to the solution of linear functional equations in Banach spaces. Bull. Amer. Math. Soc. (N.S.) 75 (1969), 347352.10.1090/S0002-9904-1969-12166-XCrossRefGoogle Scholar
Dotson, W. G. Jr. On the solution of linear functional equations by averaging iteration. Proc. Amer. Math. Soc. 25 (1970), 504506.Google Scholar
Dotson, W. G. Jr. Mean ergodic theorem and iterative solution of linear functional equations. J. Math. Anal. Appl. 34 (1971), 141150.10.1016/0022-247X(71)90164-8CrossRefGoogle Scholar
el Abdalaoui, E. H., El Machkouri, M. and Nogueira, A.. A criterion of weak mixing property. Proc. Éc. Théor. Ergodique II, Sémin. Congr. Sémin. Congr. SMF 20 (2010), 105111.Google Scholar
Friedman, N. A.. Introduction to Ergodic Theory (Van Nostrand Reinhold Mathematical Studies, 29). Van Nostrand Reinhold Co., New York–Toronto, Ontario–London, 1970.Google Scholar
Giraudo, D.. Invariance principle via orthomartingale approximation. Stoch. Dyn. 18(6) (2018), 1850043.10.1142/S0219493718500430CrossRefGoogle Scholar
Gordin, M. I.. The central limit theorem for stationary processes. Sov. Math. Dokl. 10 (1969), 174176.Google Scholar
Gordin, M. I.. Martingale-coboundary representation for a class of random fields. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 364 (2009), 88108.Google Scholar
Gottschalk, W. H. and Hedlund, G. A.. Topological Dynamics (Colloquium Publications, 36). American Mathematical Society, Providence, RI, 1955.10.1090/coll/036CrossRefGoogle Scholar
Gouëzel, S.. Regularity of coboundaries for nonuniformly expanding Markov maps. Proc. Amer. Math. Soc. 134(2) (2005), 391401.10.1090/S0002-9939-05-08145-1CrossRefGoogle Scholar
Groetsch, C. W.. Ergodic theory and iterative solution of linear equations. Appl. Anal. 5 (1976), 313321.10.1080/00036817608839134CrossRefGoogle Scholar
Guenais, M. and Parreau, F.. Eigenvalues of transformations arising from irrational rotations and step functions [Valeurs propres de transformations liées aux rotations irrationnelles et aux fonctions en escalier]. Preprint, 2006, arXiv:math/0605250.Google Scholar
Halász, G.. Remarks on the remainder in Birkhoff’s ergodic theorem. Acta Math. Acad. Sci. Hungaricae Tomus 28(3–4) (1976), 389395.10.1007/BF01896805CrossRefGoogle Scholar
Kachurovskii, A. G.. The rate of convergence in ergodic theorems. Russian Math. Surveys 51 (1996), 653703.10.1070/RM1996v051n04ABEH002964CrossRefGoogle Scholar
Katok, A. and Spatzier, R. J.. First cohomology of Anosov actions of higher rank abelian groups and applications to rigidity. Publ. Math. Inst. Hautes Études Sci. 79 (1994), 131156.10.1007/BF02698888CrossRefGoogle Scholar
Katok, A. and Spatzier, R. J.. Differential rigidity of Anosov actions of higher rank abelian groups and algebraic lattice actions. Tr. Mat. Inst. Steklova 216 (1997), 292319.Google Scholar
Korepanov, A., Kosloff, Z. and Melbourne, I.. Martingale-coboundary decomposition for families of dynamical systems. Ann. Inst. H. Poincaré Anal. Non Linéaire 35(4) (2018), 859885.10.1016/j.anihpc.2017.08.005CrossRefGoogle Scholar
Kornfeld, I.. Some old and new Rokhlin towers. Chapel Hill Ergodic Theory Workshops (Contemporary Mathematics, 356). Ed. I. Assani. American Mathematical Society, Providence, RI, 2004, pp. 145169.10.1090/conm/356/06502CrossRefGoogle Scholar
Kozma, G. and Lev, N.. Exponential Riesz bases, discrepancy of irrational rotations and BMO. J. Fourier Anal. Appl. 17 (2011), 879898.10.1007/s00041-011-9178-1CrossRefGoogle Scholar
Kwapień, S.. Linear functionals invariant under measure preserving transformations. Math. Nachr. 43 (1984), 175179.10.1002/mana.19841190116CrossRefGoogle Scholar
Lin, M. and Sine, R.. Ergodic theory and the functional equation $\left(I-T\right)x=y$ . J. Operator Theory 10(1) (1983), 153166.Google Scholar
Livšic, A. N.. Cohomology of dynamical systems. Math. USSR Izvestija 6(6) (1972), 1278.10.1070/IM1972v006n06ABEH001919CrossRefGoogle Scholar
Neumann, C.. Untersuchungen űber das logarithmische und Newtonsche potential. Teubner, Leipzig, 1877.Google Scholar
Petersen, K.. Ergodic Theory. Cambridge University Press, Cambridge, MA, 1983.10.1017/CBO9780511608728CrossRefGoogle Scholar
Quas, A.. Rigidity of continuous coboundaries. Bull. Lond. Math. Soc. 29(5) (1997), 595600.10.1112/S0024609396002810CrossRefGoogle Scholar
Rokhlin, V. A.. On mean notions of measure theory. Mat. Sb. 25(1) (1949), 107150.Google Scholar
Rokhlin, V. A.. On the fundamental ideas of measure theory. AMS Transl. Ser. One 10 (1962), 253.Google Scholar
Schmidt, K.. Cocycles of Ergodic Transformation Group (Macmillan Lectures in Mathematics, 1). Macmillan Company of India, Ltd., Delhi, 1977.Google Scholar
Veech, W.. Periodic points and invariant pseudomeasures for toral endomorphisms. Ergod. Th. & Dynam. Sys. 6(3) (1986), 449473.10.1017/S0143385700003606CrossRefGoogle Scholar
Vinhage, K.. Cocycle rigidity of partially hyperbolic abelian actions with almost rank-one factors. Ergod. Th. & Dynam. Sys. 39(7) (2019), 20062016.10.1017/etds.2017.119CrossRefGoogle Scholar
Volny, D. Approximating martingales and the central limit theorem for strictly stationary processes. Stochastic Process. Appl. 44 (1993), 4174.10.1016/0304-4149(93)90037-5CrossRefGoogle Scholar
Volny, D. and Weiss, B.. Coboundaries in ${L}_0^{\infty }$ . Ann. Inst. H. Poincaré Anal. Non Linéaire 40 (2004), 771778.10.1016/j.anihpb.2004.01.004CrossRefGoogle Scholar