Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-05-24T01:27:00.342Z Has data issue: false hasContentIssue false

A new class of rank-one transformations with singular spectrum

Published online by Cambridge University Press:  01 October 2007

EL HOUCEIN EL ABDALAOUI*
Affiliation:
Université de Rouen-Mathématiques, Laboratoire de Maths Raphael Salem, UMR 60 85 CNRS, Avenue de l’Université, BP 12, 76801 Saint Etienne du Rouvray, France (email: elhoucein.elabdalaoui@univ-rouen.fr)

Abstract

We introduce a new tool to study the spectral type of rank-one transformations using the method of the central limit theorem for trigonometric sums. We get some new applications.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Adams, T. R.. On Smorodinsky conjecture. Proc. Amer. Math. Soc. 126 (1998), 739744.CrossRefGoogle Scholar
[2]Adams, T. R. and Friedman, N. A.. Mixing staircase. Preprint, 1992.Google Scholar
[3]Berkes, I.. On the central limit theorem for Lacunary trigonometric series. Anal. Math. 4(3) (1978), 159180.CrossRefGoogle Scholar
[4]Bourgain, J.. On the spectral type of Ornstein class one transformations. Israel J. Math. 84 (1993), 5363.CrossRefGoogle Scholar
[5]Choksi, J. R. and Nadkarni, M. G.. The maximal spectral type of rank one transformation. Canad. Math. Bull. 37(1) (1994), 2936.CrossRefGoogle Scholar
[6]Creutz, D. and Silva, C. E.. Mixing on a class of rank-one transformations. Ergod. Th. & Dynam. Sys. 24(2) (2004), 407440.CrossRefGoogle Scholar
[7]Dooley, A. H. and Eigen, S. J.. A family of generalized Riesz products. Canad. J. Math. 48(2) (1996), 302315.CrossRefGoogle Scholar
[8]El Abdalaoui, E. H.. La singularité mutuelle presque sûre du spectre des transformations d’Ornstein. Israel J. Math. 112 (1999), 135155.Google Scholar
[9]El Abdalaoui, E. H., Parreau, F. and Prikhod’ko, A. A.. A new class of Ornstein transformations with singular spectrum. Ann. Inst. H. Poincaré Probab. Statist. 42(6) (2006), 671681.CrossRefGoogle Scholar
[10]Erdös, P.. On trigonometric sums with gaps. Magyar Tud. Akad. Mat. Kutató Int. Közl 7 (1962), 3742.Google Scholar
[11]Friedman, N. A.. Introduction to Ergodic Theory. Van Nostrand Reinhold, New York, 1970.Google Scholar
[12]Friedman, N. A.. Replication and stacking in ergodic theory. Amer. Math. Monthly 99 (1992), 3134.CrossRefGoogle Scholar
[13]Fukuyama, K. and Takahashi, S.. The central limit theorem for lacunary series. Proc. Amer. Math. Soc. 127(2) (1999), 599608.CrossRefGoogle Scholar
[14]Kac, M.. Statistical Independence in Probability, Analysis and Number Theory (The Carus Mathematical Monographs, 12). Mathematical Association of America. John Wiley and Sons, New York, 1959.CrossRefGoogle Scholar
[15]Kahane, J.-P.. Lacunary Taylor and Fourier series. Bull. Amer. Math. Soc. 70 (1964), 199213.CrossRefGoogle Scholar
[16]Kilmer, S. J. and Saeki, S.. On Riesz products measures, mutual absolute continuity and singularity. Ann. Inst. Fourier (Grenoble) 38 (1988), 6393.CrossRefGoogle Scholar
[17]Klemes, I.. The spectral type of staircase transformations. Tohoku Math. J. 48 (1994), 247258.Google Scholar
[18]Klemes, I. and Reinhold, K.. Rank one transformations with singular spectrum type. Israel J. Math. 98 (1997), 114.CrossRefGoogle Scholar
[19]McLeish, D. L.. Dependent central limit theorems and invariance principles. Ann. Probab. 2 (1974), 620628.CrossRefGoogle Scholar
[20]Murai, T.. The central limit theorem for trigonometric series. Nagoya Math. J. 87 (1982), 7994.CrossRefGoogle Scholar
[21]Nadkarni, M. G.. Spectral Theory of Dynamical Systems. Birkhäuser, Cambridge, MA, 1998.Google Scholar
[22]Ornstein, D. S.. On the root problem in ergodic theory. Proc. Sixth Berkeley Symp. in Mathematical Statistics and Probability. University of California Press, Berkeley, 1971, pp. 347356.Google Scholar
[23]Petit, B.. Le théorème limite central pour des sommes de Riesz–Raĭkov. Probab. Theory Related Fields 93(4) (1992), 407438.CrossRefGoogle Scholar
[24]Prikhod’ko, A. A.. Stochastic constructions of flows of rank 1. Sb. Math. 192(11–12) (2001), 17991828.CrossRefGoogle Scholar
[25]Takahashi, S.. Probability limit theorems for trigonometric series. Limit Theorems of Probability Theory (Colloq., Keszthely, 1974) (Colloq. Math. Soc. Janos Bolyai, 11). North-Holland, Amsterdam, 1975, pp. 381397.Google Scholar
[26]Zygmund, A.. Trigonometric Series. Vol. II, 2nd edn. Cambridge University Press, Cambridge, 1959, pp. 263264.Google Scholar