Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-06-03T02:38:02.747Z Has data issue: false hasContentIssue false

Uniform approximation problems of expanding Markov maps

Published online by Cambridge University Press:  15 February 2023

YUBIN HE*
Affiliation:
Department of Mathematics, South China University of Technology, Guangzhou, Guangdong 510641, P. R. China
LINGMIN LIAO
Affiliation:
School of Mathematics and Statistics, Wuhan University, Wuhan, Hubei 430072, P. R. China (e-mail: lmliao@whu.edu.cn)

Abstract

Let $ T:[0,1]\to [0,1] $ be an expanding Markov map with a finite partition. Let $ \mu _\phi $ be the invariant Gibbs measure associated with a Hölder continuous potential $ \phi $. For $ x\in [0,1] $ and $ \kappa>0 $, we investigate the size of the uniform approximation set

$$ \begin{align*}\mathcal U^\kappa(x):=\{y\in[0,1]:\text{ for all } N\gg1, \text{ there exists } n\le N, \text{ such that }|T^nx-y|<N^{-\kappa}\}.\end{align*} $$

The critical value of $ \kappa $ such that $ \operatorname {\mathrm {\dim _H}}\mathcal U^\kappa (x)=1 $ for $ \mu _\phi $-almost every (a.e.) $ x $ is proven to be $ 1/\alpha _{\max } $, where $ \alpha _{\max }=-\int \phi \,d\mu _{\max }/\int \log |T'|\,d\mu _{\max } $ and $ \mu _{\max } $ is the Gibbs measure associated with the potential $ -\log |T'| $. Moreover, when $ \kappa>1/\alpha _{\max } $, we show that for $ \mu _\phi $-a.e. $ x $, the Hausdorff dimension of $ \mathcal U^\kappa (x) $ agrees with the multifractal spectrum of $ \mu _\phi $.

MSC classification

Type
Original Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alessandri, P. and Berthé, V.. Three distance theorems and combinatorics on words. Enseign. Math. 44 (1998), 103132.Google Scholar
Baladi, V.. Positive Transfer Operators and Decay of Correlations (Advanced Series in Nonlinear Dynamics, 16). World Scientific, River Edge, NJ, 2000.CrossRefGoogle Scholar
Barral, J. and Fan, A. H.. Covering numbers of different points in Dvoretzky covering. Bull. Sci. Math. France 129 (2005), 275317.CrossRefGoogle Scholar
Barreira, L., Pesin, Y. and Schmeling, J.. On a general concept of multifractality: multifractal spectra for dimensions, entropies, and Lyapunov exponents. Multifractal rigidity. Chaos 7 (1997), 2738.CrossRefGoogle ScholarPubMed
Bishop, C. J. and Peres, Y.. Fractals in Probability and Analysis (Cambridge Studies in Advanced Mathematics, 162). Cambridge University Press, Cambridge, 2017.Google Scholar
Bowen, R.. Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms. Springer, Berlin, 1975.CrossRefGoogle Scholar
Brown, G., Michon, G. and Peyrière, J.. On the multifractal analysis of measures. J. Stat. Phys. 66 (1992), 775790.CrossRefGoogle Scholar
Bugeaud, Y.. A note on inhomogeneous Diophantine approximation. Glasg. Math. J. 45 (2003), 105110.CrossRefGoogle Scholar
Bugeaud, Y. and Liao, L.. Uniform Diophantine approximation related to $b$ -ary and $\beta$ -expansions. Ergod. Th. & Dynam. Sys. 36 (2016), 122.CrossRefGoogle Scholar
Collet, P., Lebowitz, J. and Porzio, A.. The dimension spectrum of some dynamical systems. J. Stat. Phys. 47 (1987), 609644.CrossRefGoogle Scholar
Dvoretzky, A.. On covering the circle by randomly placed arcs. Proc. Natl. Acad. Sci. USA 42 (1956), 199203.CrossRefGoogle ScholarPubMed
Fan, A. H.. How many intervals cover a point in Dvoretzky covering? Israel J. Math. 131 (2002), 157184.CrossRefGoogle Scholar
Fan, A. H., Schmeling, J. and Troubetzkoy, S.. A multifractal mass transference principle for Gibbs measures with applications to dynamical Diophantine approximation. Proc. Lond. Math. Soc. (3) 107 (2013), 11731219.CrossRefGoogle Scholar
Galatolo, S.. Dimension and hitting time in rapidly mixing systems. Math. Res. Lett. 14 (2007), 797805.CrossRefGoogle Scholar
Holland, M., Kirsebom, M., Kunde, P. and Persson, T.. Dichotomy results for eventually always hitting time statistics and almost sure growth of extremes. Preprint, 2021, arXiv:2109.06314.Google Scholar
Jenkinson, O.. Ergodic optimization. Discrete Contin. Dyn. Syst. 15 (2006), 197224.CrossRefGoogle Scholar
Jonasson, J. and Steif, J.. Dynamical models for circle covering: Brownian motion and Poisson updating. Ann. Probab. 36 (2008), 739764.CrossRefGoogle Scholar
Kim, D. H. and Liao, L.. Dirichlet uniformly well-approximated numbers. Int. Math. Res. Not. IMRN 2019 (2019), 76917732.CrossRefGoogle Scholar
Kirsebom, M., Kunde, P. and Persson, T.. Shrinking targets and eventually always hitting points for interval maps. Nonlinearity 33 (2020), 892914.CrossRefGoogle Scholar
Koivusalo, H., Liao, L. and Persson, T.. Uniform random covering problems. Int. Math. Res. Not. IMRN 2023 (2023), 455481.CrossRefGoogle Scholar
Liao, L. and Seuret, S.. Diophantine approximation by orbits of expanding Markov maps. Ergod. Th. & Dynam. Sys. 33 (2013), 585608.CrossRefGoogle Scholar
Liverani, C., Saussol, B. and Vaienti, S.. Conformal measure and decay of correlation for covering weighted systems. Ergod. Th. & Dynam. Sys. 18 (1998), 13991420.CrossRefGoogle Scholar
Parry, W. and Pollicott, M.. Zeta functions and the periodic orbit structure of hyperbolic dynamics. Astérisque 187–188 (1990), 1256.Google Scholar
Persson, T. and Rams, M.. On shrinking targets for piecewise expanding interval maps. Ergod. Th. & Dynam. Sys. 37 (2017), 646663.CrossRefGoogle Scholar
Pesin, Y. and Weiss, H.. The multifractal analysis of Gibbs measures: motivation, mathematical foundation, and examples. Chaos 7 (1997), 89106.CrossRefGoogle ScholarPubMed
Rand, D. A.. The singularity spectrum $f(\alpha)$ for cookie-cutters. Ergod. Th. & Dynam. Sys. 9 (1989), 527541.CrossRefGoogle Scholar
Ruelle, D.. Thermodynamic Formalism. The Mathematical Structures of Equilibrium Statistical Mechanics, 2nd edn. Cambridge University Press, Cambridge, 2004.CrossRefGoogle Scholar
Schmeling, J. and Troubetzkoy, S.. Inhomogeneous Diophantine approximation and angular recurrence properties of the billiard flow in certain polygons. Mat. Sb. 194(2) (2003), 129144; Engl. Trans. Sb. Math. 194(2) (2003), 295–309.Google Scholar
Seuret, S.. Inhomogeneous random coverings of topological Markov shifts. Math. Proc. Cambridge Philos. Soc. 165 (2018), 341357.CrossRefGoogle Scholar
Shepp, L.. Covering the circle with random arcs. Israel J. Math. 11 (1972), 328345.CrossRefGoogle Scholar
Simpelaere, D.. Dimension spectrum of Axiom A diffeomorphisms. II. Gibbs measures. J. Stat. Phys. 76 (1994), 13591375.CrossRefGoogle Scholar
Tang, J. M.. Random coverings of the circle with i.i.d. centers. Sci. China Math. 55 (2015), 12571268.CrossRefGoogle Scholar
Walters, P.. Invariant measures and equilibrium states for some mappings which expand distances. Trans. Amer. Math. Soc. 236 (1978), 121153.CrossRefGoogle Scholar
Zheng, L. and Wu, M.. Uniform recurrence properties for beta-transformation. Nonlinearity 33 (2020), 45904612.CrossRefGoogle Scholar