Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-06-03T02:46:47.423Z Has data issue: false hasContentIssue false

Theoretical aspects of the Fireball scenario

Published online by Cambridge University Press:  22 July 2013

A. Bret
Affiliation:
ETSI Industriales, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain
A. Stockem
Affiliation:
GoLP/Instituto de Plasmas e Fusão Nuclear, Laboratório Associado, Instituto Superior Técnico, Lisboa, Portugal
E. Pérez-Álvaro
Affiliation:
ETSI Industriales, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain
F. Fiuza
Affiliation:
GoLP/Instituto de Plasmas e Fusão Nuclear, Laboratório Associado, Instituto Superior Técnico, Lisboa, Portugal
C. Ruyer
Affiliation:
CEA, DAM, DIF, 91297 Arpajon, France
R. Narayan
Affiliation:
Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS-51 Cambridge, MA 02138, USA
L.O. Silva
Affiliation:
GoLP/Instituto de Plasmas e Fusão Nuclear, Laboratório Associado, Instituto Superior Técnico, Lisboa, Portugal
Get access

Abstract

Collisionless shocks are a key ingredient of the Fireball scenario. Yet, their formation from the encounter of two collisionless plasma shells is not understood from first principles. When the shells interpenetrate, the overlapping region turns unstable, triggering the shock formation. As a first step towards a microscopic understanding of the process, we analyze here in details the initial instability phase. On the one hand, 2D relativistic PIC simulations are performed where two symmetric initially cold pair plasmas collide. On the other hand, the instabilities at work are analyzed, as well as the field at saturation and the seed field which gets amplified. For mildly relativistic motions and onward, Weibel modes with ω = 0+ govern the linear phase. We derive an expression for the duration of the linear phase in reasonable agreement with the simulations.

Type
Research Article
Copyright
© EAS, EDP Sciences 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Nakar, E., 2007, Phys. Rep., 442, 166 CrossRef
Blandford, R., & Ostriker, J., 1978, ApJ, 221, L29 CrossRef
Spitkovsky, A., 2008, ApJ, 682, L5 CrossRef
Nishikawa, K.-I., Hardee, P., Richardson, G., et al., 2005, ApJ, 622, 927 CrossRef
Joseph, J.A., Thomas, J.E., Kulkarni, M., et al., 2011, Phys. Rev. Lett., 106, 150401 CrossRef
Faĭnberg, Y.B., Shapiro, V.D., & Shevchenko, V., 1970, Soviet Phys. JETP, 30, 528
Watson, K.M., Bludman, S.A., & Rosenbluth, M.N., 1960, Phys. Fluids, 3, 741 CrossRef
Bret, A., & Deutsch, C., 2005, Phys. Plasmas, 12, 082704 CrossRef
Bret, A., Gremillet L., & Dieckmann, M.E., 2010, Phys. Plasmas, 17, 120501 CrossRef
Bret, A., Firpo, M.-C., & Deutsch, C., 2004, Phys. Rev. E, 70, 046401 CrossRef
Bret, A., Stockem A., Fiuza F., et al., 2012, Submitted to Phys. Plasmas
Bret, A., & Pérez-Álvaro, E., 2011, Phys. Plasmas, 18, 080706 CrossRef
Medvedev, M.V., & Loeb, A.A., 1999, ApJ, 526, 697 CrossRef
Sitenko, A.G., 1967, Electromagnetic Fluctuations in Plasma (Academic Press, New York)
Dieckmann, M.E., Ynnerman, A., Chapman, S.C., et al., 2004, Phys. Scripta, 69, 456 CrossRef