Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-05-26T11:30:23.824Z Has data issue: false hasContentIssue false

ASSESSMENT OF NITROGEN FIXATION POTENTIAL IN AHIPA (Pachyrhizus ahipa) AND ITS EFFECT ON ROOT AND SEED YIELD

Published online by Cambridge University Press:  01 April 2009

D. N. RODRÍGUEZ-NAVARRO*
Affiliation:
IFAPA, Centro Las Torres-Tomejil, CAP-Junta de Andalucía, Apdo. Oficial, 41200 Alcalá del Río, Sevilla, Spain
M. CAMACHO
Affiliation:
IFAPA, Centro Las Torres-Tomejil, CAP-Junta de Andalucía, Apdo. Oficial, 41200 Alcalá del Río, Sevilla, Spain
F. TEMPRANO
Affiliation:
IFAPA, Centro Las Torres-Tomejil, CAP-Junta de Andalucía, Apdo. Oficial, 41200 Alcalá del Río, Sevilla, Spain
C. SANTAMARÍA
Affiliation:
IFAPA, Centro Las Torres-Tomejil, CAP-Junta de Andalucía, Apdo. Oficial, 41200 Alcalá del Río, Sevilla, Spain
E. O. LEIDI
Affiliation:
Departamento de Biotecnología Vegetal, Instituto de Recursos Naturales y Agrobiología de Sevilla, CSIC, Av. Reina Mercedes 10, 41012 Sevilla, Spain
*

Summary

Ahipa is a legume of great interest for the production of raw materials (starch, sugar, oil and proteins) for industrial use. Its yield potential and ability to fix atmospheric N2 in association with rhizobia makes it an attractive option for low input agriculture systems. At present, it is cultivated on a very small scale as a food crop in a few South American countries. Little information is available on symbiotic N2 fixation in ahipa and no work has been performed on strain selection for inoculant production. Soils in southwest Europe are devoid of specific rhizobia able to nodulate on ahipa. Selecting rhizobia for symbiotic effectiveness from a collection led to the isolation of strains which provided greater shoot growth and N content under controlled conditions. In the field, inoculation at sowing with the selected strains increased significantly seed and tuberous root yield and seed protein content. The amount of N2 fixed, estimated by 15N natural abundance, reached 160–260 kg N ha−1. In previous work, ahipa appeared to be a promising alternative crop for the production of industrial raw materials. The results of the present study showed a yield increase in tuberous roots and seeds when applying effective rhizobia inoculants. Furthermore, a positive soil N balance was left after its cultivation making ahipa even more interesting for sustainable farming systems.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Castellanos, J. Z., Zapata, F., Badillo, V., Peña-Cabriales, J. J., Jensen, E. S. and Heredia-García, E. (1997). Symbiotic nitrogen fixation and yield of Pachyrhizus erosus (L.) Urban cultivars and Pachyrhizus ahipa (Wedd.) Parodi landraces as affected by flower pruning. Soil Biology and Biochemistry 29:973981.CrossRefGoogle Scholar
Fassola, H. E., Pachas, N. A., Rohatsch, P., Uset, A. and Wiss, F. (2007). Pachyrhizus ahipa: un cultivo alternativo para la producción de proteínas y almidones. Informe Técnico N° 60, Publicaciones Regionales INTA, Montecarlo, Misiones, Argentina. ISSN-0327–926XGoogle Scholar
Grum, M. and Sørensen, M. (1998). Pachyrhizus DC. (yam bean) symbiosis with Rhizobium bacteria: Genetic variation and performance. In Proceedings 2nd International Symposium on Tuberous Legumes, 419–429 (Eds Sørensen, M., Estrella, J. E., Hamann, O. J. and Ríos Ruíz, S. A.). Celaya, Mexico: MacKenzie Press, København.Google Scholar
Hansen, A. P., Rerkasem, B., Lordkaew, S. and Martin, P. (1993). Xylem-solute technique to measure N2 fixation by Phaseolus vulgaris L.: Calibration and sources of error. Plant and Soil 150:223231.Google Scholar
Hardarson, G. and Atkins, C. A. (2003). Optimising biological N2 fixation by legumes in farming systems. Plant and Soil 252:4144.CrossRefGoogle Scholar
Herridge, D. G., Bergersen, F. J. and Peoples, M. B. (1990). Measurement of nitrogen fixation by soybean in the field using the ureide and natural 15N abundance methods. Plant Physiology 93:708716.CrossRefGoogle ScholarPubMed
Jensen, E. S. and Hauggaard-Nielsen, H. (2003). How can increased use of biological N2 fixation in agriculture benefit the environment? Plant and Soil 252:77186.Google Scholar
Khan, D. F., Peoples, M. B., Chalk, P. M. and Herridge, D. F. (2002). Quantifying below-ground nitrogen of legumes. 2. A comparison of 15N and non isotopic methods. Plant and Soil 239:277289.CrossRefGoogle Scholar
Kjær, S. (1992). Biological nitrogen fixation in Pachyrhizus ahipa (Wedd.) Parodi. Annals of Botany 70:1117.CrossRefGoogle Scholar
Kyei-Boahen, S., Slinkard, A. E. and Walley, F. L. (2002). Isotopic fractionation during N2 fixation by chickpea. Soil Biology and Biochemistry 34:417420.Google Scholar
LaRue, T. A. and Paterson, T. G. (1981). How much nitrogen do legumes fix? Advances in Agronomy 34:1538.CrossRefGoogle Scholar
Leidi, E. O. (2001). Exploring the potential of a sustainable crop as an alternative non-food source. Final Report, AHIPA FAIR CT98–4297.Google Scholar
Leidi, E. O., Sarmiento, R., Mazuelos, C. and Rodriguez-Navarro, D. N. (1997). Efecto de la fuente de nitrógeno en la distribución de asimilados y composición de savia en ajipa (Pachyrhizus ahipa (Wedd. Parodi). In Nutrición Mineral de las Plantas en la Agricultura Sostenible (Eds Sarmiento, R., Leidi, E. O. and Troncoso, A.), 3440. Servicio de Publicaciones, DGIFA, CAP, Junta de Andalucía, ISBN 84-89802-09-2.Google Scholar
Leidi, E. O., Sarmiento, R. and Rodríguez-Navarro, D. N. (2003). Ahipa (Pachyrhizus ahipa [Wedd.] Parodi): an alternative legume crop for sustainable production of starch, oil and protein. Industrial Crops and Products 17:2737.Google Scholar
Leidi, E. O., Rodríguez-Navarro, D. N., Fernández, M., Sarmiento, R., Semedo, J., Marques, N., Matos, A., Ørting, B., Sørensen, M. and Matos, M. C. (2004). Factors affecting root and seed yield in ahipa (Pachyrhizus ahipa (Wedd.) Parodi), a multipurpose legume crop. European Journal of Agronomy 20:395403.Google Scholar
O´Hara, G., Yates, R. and Howieson, J. (2002). Selection of strains of root nodule bacteria to improve inoculant performance and increase legume productivity in stressful environments. In Inoculants and Nitrogen Fixation of Legumes in Vietnam, 7580 (Ed. Herridge, D. F.). Canberra, Australia: ACIAR Proceedings, No.109.Google Scholar
Ørting, B., Güneberg, W. J. and Sørensen, M. (1996). Ahipa (Pachyrhizus ahipa (Wedd.) Parodi) in Bolivia. Genetic Resources and Crop Evolution 43:435446.Google Scholar
Peoples, M. B. and Herridge, D. F. (1990). Nitrogen fixation by legumes in tropical and subtropical agriculture. Advances in Agronomy 44:155223.CrossRefGoogle Scholar
Sørensen, M. (1996). Yam bean Pachyrhizus DC. Promoting the conservation and use of underutilized and neglected crops 2. IPGRI, Rome.Google Scholar
Steele, K. W., Bonish, P. M., Daniel, R. M. and O'Hara, G. W. (1983). Effect of rhizobial strain and host plant on nitrogen isotopic fractionation in legumes. Plant Physiology 72:10011004.Google Scholar
Stephens, J. H. G. and Rask, H. M. (2000). Inoculant production and formulation. Field Crops Research 65:249258.CrossRefGoogle Scholar
Unkovich, M. J. and Pate, J. S. (2000). An appraisal of recent field measurements of symbiotic N2 fixation by annual legumes. Field Crops Research 65:211228.CrossRefGoogle Scholar
Van Kessel, C. and Hartley, C. (2000). Agricultural management of grain legumes: has it led to an increase in nitrogen fixation? Field Crops Research 65:165181.Google Scholar
Yoneyama, T., Kounosuke, F., Yoshida, T., Matsumoto, T., Kambayashi, I. and Yazaki, J. (1986). Variation in natural abundance of 15N among plant parts and in 15N/ 14N fractionation during N2 fixation in the legume-rhizobia symbiotic system. Plant and Cell Physiology 27:791799.CrossRefGoogle Scholar
Zanklan, A. S., Ahouangonou, S., Becker, H. C., Pawelzik, E. and Grüneberg, W. J. (2007). Evaluation of the storage root-forming legume yam bean (Pachyrhizus spp.) under West African condition. Crop Science 47:19341946.CrossRefGoogle Scholar