Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-06-06T07:49:47.925Z Has data issue: false hasContentIssue false

IS ABSCISIC ACID INVOLVED IN THE DROUGHT RESPONSES OF BRAZILIAN GREEN DWARF COCONUT?

Published online by Cambridge University Press:  01 April 2009

F. P. GOMES*
Affiliation:
Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Rod. Ilhéus-Itabuna, km16, 45662-000 Ilhéus, BA, Brazil
M. A. OLIVA
Affiliation:
Departamento de Biologia Vegetal (DBV), Universidade Federal de Viçosa (UFV), Av. PH Rolfs, s/n, Viçosa 36571-000, MG, Brazil
M. S. MIELKE
Affiliation:
Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Rod. Ilhéus-Itabuna, km16, 45662-000 Ilhéus, BA, Brazil
A-A. F. DE ALMEIDA
Affiliation:
Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Rod. Ilhéus-Itabuna, km16, 45662-000 Ilhéus, BA, Brazil
H. G. LEITE
Affiliation:
Departamento de Engenharia Florestal (DEF), Universidade Federal de Viçosa (UFV), Av. PH Rolfs, s/n, Viçosa 36571-000, MG, Brazil
L. A. AQUINO
Affiliation:
Departamento de Biologia Vegetal (DBV), Universidade Federal de Viçosa (UFV), Av. PH Rolfs, s/n, Viçosa 36571-000, MG, Brazil
*
Corresponding author: e-mail: gomes@uesc.br

Summary

Abscisic acid (ABA) accumulation in leaves of drought-stressed coconut palms and its involvement with stomatal regulation of gas exchange during and after stress were investigated. Two Brazilian Green Dwarf coconut ecotypes from hot/humid and hot/dry environments were submitted to three consecutive drying/recovery cycles under greenhouse conditions. ABA accumulated in leaflets before significant changes in pre-dawn leaflet water potential (ΨPD) and did not recover completely in the two ecotypes after 8 days of rewatering. Stomatal conductance was influenced by ABA under mild drought and by ΨPD under severe drought. There were no significant differences between the ecotypes for most variables measured. However, the ecotype from a hot/dry environment showed higher water use efficiency after repeated cycles of water stress.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Barrieu, P. and Simonneau, T. (2000). The monoclonal antibody MAC252 does not react with the (−) enantiomer of abscisic acid. Journal of Experimental Botany 51:305307.CrossRefGoogle Scholar
Burschka, C., Tenhunen, J. D. and Hartung, W. (1983). Diurnal variations in abscisic acid content and stomatal response to applied abscisic acid in leaves of irrigated and non-irrigated Arbutus unedo plants under naturally fluctuating environmental conditions. Oecologia 58:128131.CrossRefGoogle ScholarPubMed
Calbo, M. E. R. and Moraes, J. A. P. V. (1997). Fotossíntese, condutância estomática, transpiração e ajustamento osmótico de plantas de buriti submetidas a estresse hídrico. Brazilian Journal of Botany 9:117123.Google Scholar
Calbo, M. E. R. and Moraes, J. A. P. V. (2000). Efeitos da deficiência de água em plantas de Euterpe Oleracea (açaí). Brazilian Journal of Botany 23:225230.CrossRefGoogle Scholar
Davies, W. J., Wilkinson, S. and Loveys, B. (2002). Stomatal control by chemical signaling and the exploitation of this mechanism to increase water use efficiency in agriculture. New Phytologist 153:449460.CrossRefGoogle ScholarPubMed
Dodd, I. C. (2007). Soil moisture heterogeneity during deficit irrigation alters root-to-shoot signaling of abscisic acid. Functional Plant Biology 34:439448.CrossRefGoogle ScholarPubMed
Gomes, F. P. and Prado, C. H. B. A. (2007). Ecophysiology of coconut palm under water stress. Brazilian Journal of Plant Physiology 19:377391.CrossRefGoogle Scholar
Gomes, F. P., Mielke, M. S. and Almeida, A-A.F. (2002). Leaf gas exchange of green dwarf coconut (Cocos nucifera L. var. nana) in two contrasting environments of the Brazilian north-east region. The Journal of Horticultural Science and Biotechnology 77:766772.CrossRefGoogle Scholar
Gomes, F. P., Oliva, M. A., Mielke, M. S., Almeida, A-A. F., Leite, H. G. and Aquino, L. A. (2008). Photosynthetic limitations in leaves of young Brazilian Green Dwarf coconu (Cocos nucifera L. ‘nana’) palm under well-watered conditions or recovering from drought stress. Environmental and Experimental Botany 62:195204.CrossRefGoogle Scholar
Jones, H. G. (1987). Correction for non-specific interference in competitive immunoassays. Physiologia Plantarum 70:146154.CrossRefGoogle Scholar
León, R., Santamaría, J. M., Alpizar, L., Escamilla, J. A. and Oropeza, C. (1996). Physiological and biochemical changes in shoots of coconut palms affected by lethal yellowing. New Phytologist 134:227234.CrossRefGoogle Scholar
Magat, S. (2003). Coconut leaf nutrient levels of bearing dwarf varieties and physiological critical and adequacy levels in crop nutrition management. Coconut Research and Development 19:110.Google Scholar
McKnight, T. L. and Hess, D. (2004). Climate zones and types: The Köppen System. In: Physical Geography: A Landscape Appreciation (Eds McKnight, T. L. and Hess, D.). Prentice Hall, New Jersey, USA. pp. 200240.Google Scholar
Nemani, R. R., Keeling, C. D., Hashimoto, H., Jolly, W. M., Piper, S. C., Tucker, C. J., Myneni, R. B. and Running, S. W. (2003). Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science 300:15601563.CrossRefGoogle ScholarPubMed
Oliveira, M. A. J., Bovi, M. L. A., Machado, E. C., Gomes, M. M. A. G., Habermann, G. and Rodrigues, J. D. (2002). Fotossíntese, condutância estomática e transpiração em pupunheira sob deficiência hídrica. Scientia Agricola 59:5963.CrossRefGoogle Scholar
Passos, E. E. M., Prado, C. H. B. A. and Aragão, W. M. (2009) The influence of vapour pressure deficit on leaf water relations of Cocos nucifera in northeast Brazil. Experimental Agriculture 45:114.CrossRefGoogle Scholar
Prado, C. H. B. A., Passos, E. E. M. and Moraes, J. A. P. V. (2001). Photosynthesis and water relations of six tall coconut genotypes of Cocos nucifera in wet and dry seasons. South African Journal of Botany 67:169176.CrossRefGoogle Scholar
Quarrie, S. A., Whitford, P. N., Appleford, N. E., Wang, T. L., Cook, S. K., Henson, I. E. and Loveys, B. R. (1988). A monoclonal antibody to (S)-abscisic acid: its characterization and use in a radioimmunoassay for measuring abscisic acid in crude extracts of cereal and lupin leaves. Planta 173:330339.CrossRefGoogle Scholar
Rajagopal, V. and Kasturi Bai, K. V. (2002). Drought tolerance mechanism in coconut. Burotrop Bulletin 17:2122.Google Scholar
Ranasinghe, C. S. (2005). Changes in the physiological performance of leaf scorch decline (LSD) affected coconut (Cocos nucifera L.) palms. Experimental Agriculture 41:255265.CrossRefGoogle Scholar
Repellin, A., Laffray, D., Daniel, C., Braconnier, S. and Zuily-Fodil, Y. (1997). Water relations and gas exchange in young coconut palm (Cocos nucifera L.) as influenced by water deficit. Canadian Journal of Botany 75:1827.CrossRefGoogle Scholar
Souza, C. R., Maroco, J. P., Santos, T. P., Rodrigues, M. L., Lopes, C., Pereira, J. S. and Chaves, M. M. (2005). Control of stomatal aperture and carbon uptake by deficit irrigation in two grapevine cultivars. Agriculture, Ecosystems and Environment 106:261274.CrossRefGoogle Scholar
von Caemmerer, S. and Farquhar, G. D. (1981). Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. Planta 153:376387.CrossRefGoogle ScholarPubMed
Wilkinson, S. and Davies, W. J. (2002). ABA-based chemical signalling: the co-ordination of responses to stress in plants. Plant, Cell and Environment 25:195210.CrossRefGoogle ScholarPubMed