Hostname: page-component-848d4c4894-x5gtn Total loading time: 0 Render date: 2024-06-03T15:27:12.074Z Has data issue: false hasContentIssue false

Humoral immunology in normotensive and hypertensive pregnancy

Published online by Cambridge University Press:  10 October 2008

Magnus Haeger*
Affiliation:
Departments of Obstetrics and Gynecology and Anesthesiology & Intensive Care, Sahlgren Hospital, Göteborg, Sweden
Anders Bengtsson
Affiliation:
Departments of Obstetrics and Gynecology and Anesthesiology & Intensive Care, Sahlgren Hospital, Göteborg, Sweden
*
Magnus Haeger MD, PhD, Dept of Obstetrics & Gynecology, Sahlgren Hospital, S-41345 Gothenburg, Sweden

Extract

The main function of the immune system is to protect the host from both pathogenic (ie. viruses, bacteria and foreign material) and neoplastic invasion. It is composed of both humoral and cellular factors. The humoral factors comprise the antibodies and the complement system, while the cellular factors comprise the lymphocytes and the phagocytes. These immunological factors remain in a relatively inactive state until activated by foreign molecules. Activation of the immune system under normal circumstances is beneficial to the host. In septic, multiply traumatized, critically ill surgical patients or severe preclamptic women, the host response to stress is more extensive and, as a result, extensive activation of immunological factors could create complications in the host like the adult respiratory distress syndrome (ARDS), multisystem organ failure (MOF) or the syndrome of haemolysis, elevated liver enzymes and low platelet count (HELLP) in preeclamptic women. In order to appreciate the later parts of this article regarding immunology and pregnancy, an understanding of the normal immune system is essential.

Type
Articles
Copyright
Copyright © Cambridge University Press 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Redl, H, Dinges, HP, Schlag, G. Quantitative estimation of leukostasis in the posttraumatic lung-canine and human autopsy data. Prog Clin Biol Res 1987; 236A: 4353.Google ScholarPubMed
2Schlag, G, Redl, H. Die Leukostse in der Lunge beim hypovolamisch-traumatischen Schock. Anaesthetist 1980; 29: 606–12.Google Scholar
3Grey, HM, Chesnut, R. Antigen processing and presentation to T cells. Immunol Today 1985; 3: 101106.CrossRefGoogle Scholar
4Ashwell, JD, Schwartz, RH. T-cell recognition of antigen and the Ia molecule as a ternary complex. Nature 1986; 320: 176–79.CrossRefGoogle ScholarPubMed
5Baumhuter, S, Bron, C, Corradin, G. Different antigen-presenting cells differ in their capacity to induce lymphokine production and proliferation of an apocytochrome c-specific T-cell clone. J Immunol 1985; 135: 989–94.CrossRefGoogle ScholarPubMed
6Miyajama, A, Miyatake, S, Schreurs, J, DeVries, J, Arai, N, Yokota, T et al. Coordinate regulation of immune and inflammatory responses by T-cell-derived lymphokines. FASEB 1988; 2: 2462–73.CrossRefGoogle Scholar
7Meuer, SC, Acuto, O, Hercend, T, Schlossman, SF, Reinherz, EL. The human T-cell receptor. Ann Rev Immunol 1984; 2: 2350.CrossRefGoogle ScholarPubMed
8Copper, MD, Kearney, JF, Gathings, WE, Lawton, AR. Effects of anti-Ig antibodies and the development and differentiation of B cells. In: Moller, G ed, Immunological reviews. Copenhagen: Munkgaard, 1980: 2953.Google Scholar
9Wall, R, Kuehl, M. Biosynthesis and regulation of immunoglobulins. Ann Rev Immunol 1983; 1: 393422.CrossRefGoogle ScholarPubMed
10Howard, M, Paul, WE. Regulation of B-cell growth and differentiation by soluble factors. Ann Rec Immunol 1983; 1: 307–33.CrossRefGoogle ScholarPubMed
11Owen, M. Major histocompatibility complex. In: Roitt, I, Brostoff, J, Male, D eds. Immunology, 2nd ed. London: Churchill Livingstone, 1989: 4.14.12.Google Scholar
12Colletti, LM, Remick, DG, Burtch, GD, Kunkel, SL, Strieter, RM, Campbell, DA. Role of tumor necrosis factor alpha in the pathophysiologic alter hepatic ischemia reperfusion injury in the rat. J Clin Invest 1990; 85: 1936–43.CrossRefGoogle ScholarPubMed
13Redl, H, Schlag, G, Bahrami, S, Schade, U, Ceska, M, Stutz, P. Plasma neutrophil-activating peptide-1/ interleukin-8 and neutrophil elastase in a primate bactermia model. J Inf Dis 1991; 164: 383–88.CrossRefGoogle Scholar
14Schlag, G, Redl, H, Dinges, HP, Davies, J, Radmore, K. Bacterial translocation in a baboon model of hypovolemic-traumatic shock. In: Schlag, G, Redl, H, Siegel, JH, Traber, DL eds, Shock, sepsis and organ failure - second Wiggers Bernard conference. Berlin, Heidelberg: Springer-Verlag, 1991: 5383.CrossRefGoogle Scholar
15Scuderi, P, Lam, KS, Ryan, KJ. Raised levels of tumor necrosis factor in parasitic infections. Lancet 1986; ii: 1364–65.CrossRefGoogle Scholar
16Hesse, DG, Tracey, KJ, Fong, Y, Manogue, KR, Palladino, MA Jr, Cerami, A et al. Cytokine appearance in human endotoxemia and primate bacteremia. Surg Gynecol Obstet 1988; 166: 147–53.Google ScholarPubMed
17Waage, A, Halstensen, A, Espevik, T. Association between tumour necrosis factor in serum and fetal outcome in patients with meningococcal disease. Lancet 1987; i: 355–57.CrossRefGoogle Scholar
18Haeffner-Cavaillon, JM, Ciancioni, C, Bacle, F, Delons, S, Kazatchkine, MD. In vivo induction of interleukin-l during hemodialysis. Kidney Int 1989; 35: 1212–18.CrossRefGoogle Scholar
19Haeffner-Cavaillon, N, Roussellier, N, Ponzio, O, Carreno, MP, Laude, M, Carpentier, A et al. Induction of interleukin-1 production in patients undergoing cardiopulmonary bypass. J Th Card Surg 1989; 98: 1100–106.CrossRefGoogle ScholarPubMed
20Beutler, B, Cerami, A. Cachectin: more than a tumor necrosis factor. N Engl J Med 1987; 316: 379–85.Google ScholarPubMed
21Debets, JMH, Kampmeijer, R, van der Linden, MPMH, Buurman, WA, van der Linden, CJ. Plasma tumor necrosis factor and mortality in critically ill septic patients. Crit Care Med 1989; 17: 489–94.CrossRefGoogle ScholarPubMed
22Waage, A, Brandtzaeg, P, Halstensen, A, Kierule, P, Espevik, T. The complex pattern of cytokines in serum from patients with meningococcal septic shock. Association between interleukin 6, interleukin 1 and fatal outcome. J Exp Med 1989; 169: 333–38.CrossRefGoogle ScholarPubMed
23Marano, MA, Fong, Y, Moldawer, LL, Wei, H, Calvano, SE, Tracey, KJ et al. Serum cachectin/tumor necrosis factor in critically ill patients with burns correlates with infection and mortality. Surg Gynecol Obstet 1990; 170: 3238.Google ScholarPubMed
24Cavaillon, JM, Fitting, C, Haeffner-Cavaillon, N. Recombinant C5a enchances interleukin 1 and tumor necrosis factor release by lipopolysaccharide-stimulated monocytes and macrophages. Eur J Immunol 1990; 20: 253–57.CrossRefGoogle Scholar
25Scholz, W, McClurg, MR, Cardenas, GJ, Smith, M, Noonan, DJ, Hugli, THE et al. C5a-mediated release of interleukin 6 by human monocytes. Clin Immunol Immunopathol 1990; 57: 297307.CrossRefGoogle ScholarPubMed
26Lemaire, I. Neurotensin enchances IL-1 production by activated alveolar macrophages. J Immunol 1988; 140: 2983–88.CrossRefGoogle Scholar
27Traycey, KJ, Fong, Y, Hesse, DG, Manogue, KR, Lee, AT, Kuo, GC et al. Anti-cachectin/TNF monoclonal antibodies prevent septic shock during lethal bacteraemia. Nature 1987; 330: 662–64.CrossRefGoogle Scholar
28Emerson, THE, Lindsey, DC, Jesmok, GJ, Duerr, ML, Fournel, MA. Efficacy of monoclonal antibody against tumor necrosis factor alpha in an endotoxic baboon model. Circ Shock 1992; 38: 3784.Google Scholar
29Kishimoto, T. The biology of interleukin-6. Blood 1989; 74: 110.CrossRefGoogle ScholarPubMed
30Larsen, CG, Anderson, AO, Appella, E, Oppenheim, JJ, Matsushima, K. The neutrophil activating protein (NAP-1) is also chemotactic for T lymphocytes. Science 1989; 243: 1464–66.CrossRefGoogle ScholarPubMed
31Turner, M. Molecules which recognize antigen. In: Roitt, I, Brostoff, J, Male, D eds. Immunology, 2nd ed. London: Churchill Livingstone, 1989: 5.1–5.12.Google Scholar
32Ross, SC, Rosenthal, PJ, Berberich, HM, Densen, P. Killing of Neisseria meningtidis by human neutrophils: implications for normal and complement-deficient individuals. J Infect Dis 1987; 155: 1266–75.CrossRefGoogle Scholar
33Ghebrehiwet, B, Müller-Eberhard, HJ. C3e: an acidic fragment of human C3 with leukocytosis inducing activity. J Immunol 1979; 123: 616–21.CrossRefGoogle ScholarPubMed
34Mayer, MM. The complement system. Scientific Am 1973; 229: 5466.CrossRefGoogle ScholarPubMed
35Densen, P, Weiler, JM, Griffiss, JM, Hoffmann, LG. Familial properdin deficiency and fatal meningococcemia. N Engl J Med 1987; 316: 922–26.CrossRefGoogle ScholarPubMed
36Molad, Y, Zimran, A, Sidi, Y, Pinkhas, J. Post-traumatic meningococcemia in a patient with deficiency of the C7 complement component. Isr J Med Sci 1990; 26: 9092.Google Scholar
37Alper, CA, Rosen, FG. Inherited deficiencies of complement proteins in man. Springer Semin Immunopathol 1984; 7: 251–61.CrossRefGoogle ScholarPubMed
38Hugli, TE. Complement anaphylatoxins as plasma mediators, spasmongens and chemotaxins. In: Bing, DH ed, The chemistry and physiology of human plasma proteins. New York: Pergamon Press, 1979: 255–80.Google Scholar
39Grant, JA, Dupree, E, Goldman, AS, Schultz, DR, Jackson, AL. Complement-mediated release of histamine from human leukocytes. J Immunol 1975; 114: 1101–106.CrossRefGoogle ScholarPubMed
40Hugli, TE, Marceau, F. Effects of the C5a anaphylatoxin and its relationship to cyclo-oxygenase metabolites in rabbit vascular strips. Br J Pharmacol 1985; 84: 725–33.CrossRefGoogle ScholarPubMed
41Hachfeld del Balzo, U, Levi, R, Polley, MJ. Cardiac dysfunction caused by purified human C3a anaphylatoxin. Proc Natl Acad Sci USA 1985; 82: 886–90.CrossRefGoogle Scholar
42Webster, RO, Hong, SR, Johnston, Jr RB, Henson, PM. Biological effects of the human complement fragments C5a and C5a desArg on neutrophil function. Immunopharmac 1980; 2: 201–19.CrossRefGoogle Scholar
43Fearon, DT, Collins, LA. Increased expression of C3b receptors on polymorphonuclear leukocytes induced by chemotactic factors and by purification procedures. J Immunol 1983; 130: 370–75.CrossRefGoogle ScholarPubMed
44Lee, J, Hakim, RM, Fearon, DT. Increased expression of the C3b receptor and complement activation during hemodialysis. Clin Exp Immunol 1984; 56: 205–14.Google Scholar
45Goldstein, IM, Brai, M, Osler, AG, Weissmann, G. Lysosomal enzyme release from human leukocytes: mediation by the alternate pathway of complement activation. J Immunol 1973; 111: 3337.CrossRefGoogle ScholarPubMed
46Goodman, MG, Chenoweth, DE, Weigle, WO. Induction of interleukin 1 secretion and enchancement of humoral immunity by binding of human C5a to macrophage surface C5a receptors. J Exp Med 1982; 1156: 912–17.CrossRefGoogle Scholar
47Henson, PM, Larsen, GL, Webster, RO, Mitchell, BC, Goins, AJ, Henson, JE. Pulmonary microvascular alterations and injury induced by complement fragments: synergistic effect of complement activation, neutrophil sequestration, and prostaglandins. Ann N Y Acad Sci USA 1982; 384: 287300.CrossRefGoogle ScholarPubMed
48Fein, AM, Lippman, M, Hotzman, H, Eliraz, A, Goldberg, SK. The risk factors, incidence, and prognosis of ARDS following septicemia. Chest 1983; 83: 4042.CrossRefGoogle ScholarPubMed
49Parker, MM, Parillo, JE. Septic shock. Hemodynamics and pathogenesis. JAMA 1983; 250: 3324–27.CrossRefGoogle ScholarPubMed
50Lachmann, PJ. Complement and disease. Rec Prog Med 1988; 79: 293–99.Google Scholar
51Dalmasso, AP. Complement in the pathophysiology and diagnosis of human disease. CRC Crit Rev Clin Lab Sci 1986; 24: 123–83.CrossRefGoogle Scholar
52Redl, H, Schlag, G. Biochemical analysis in posttraumatic and postoperative organ failure. Prog Clin Biol Res 1989; 308: 649–72.Google ScholarPubMed
53Ognibene, FP, Martin, SE, Parker, MM, Schlesinger, T, Roach, P, Burch, C et al. Adult respiratory distress syndrome in patients with severe neutropenia. N Engl J Med 1986; 315: 547–51.CrossRefGoogle ScholarPubMed
54Maunder, RJ, Hackman, RC, Riff, E, Albert, RK, Springmeyer, SC. Occurrence of the adult respiratory distress syndrome in neutropenic patients. Am Rev Respir Dis 1986; 133: 313–16.Google ScholarPubMed
55Laufe, MD, Simon, RH, Flint, A, Keller, JB. Adult respiratory distress syndrome in neutropenic patients. Am J Med 1986; 80: 1022–26.CrossRefGoogle ScholarPubMed
56Müller-Eberhard, H. The membrane attack complex of complement. Ann Rev Immunol 1986; 4: 503–28.CrossRefGoogle ScholarPubMed
57Hänsch, GM, Seitz, M, Betz, M. Effects of late acting complement components C5b-9 on human monocytes: release of prostanoids, oxygen radicals and a factor which induced cell proliferation. Int Arch Allergy Appl Immunol 1987; 82: 317–20.CrossRefGoogle Scholar
58Hänsch, GM, Seitz, M, Martinotti, G, Betz, M, Rauterberg, EW, Gemsa, D. Macrophages release arachidonic acid, prostaglandin E2, and thromboxane in response to late complement components. J Immunol 1984; 133: 2145–50.CrossRefGoogle ScholarPubMed
59Langlois, PF, Gawryl, MS. Detection of the terminal complement complex in patient plasma following acute myocardial infarction. Artherosclerosis 1988; 70: 95105.CrossRefGoogle ScholarPubMed
60Langlois, PF, Sharon, GE, Gawryl, MS. Plasma concentrations of complement-activation complexes correlated with disease activity in patients diagnosed with isolated central nervous system vasculitis. J Allergy Clin Immunol 1989; 83: 1116.CrossRefGoogle ScholarPubMed
61Haeger, M, Bengtsson, A, Karlsson, K, Heideman, M. Complement activation and anaphylatoxin (C3a and C5a) formation in preeclampsia and by amniotic fluid. Obstet Gynecol 1989; 73: 551–56.Google ScholarPubMed
62Kapp, A, Meske-Brand, S, Maly, FE, Müller, W. Komplement-aktiverung bei Patienten mit chronischer Polyartritis gemessenanhand des Komplement Bruckstuckes C3a im Plasma. Z Rheumatol 1984; 43: 103105.Google Scholar
63Zilow, G, Sturm, JA, Rother, U, Kirschfink, M. Complement activation and the prognostic value of C3a in patients at risk of adult respiratory distress syndrome. Clin Exp Immunol 1990; 79: 151–57.CrossRefGoogle ScholarPubMed
64Roxvall, L, Bengtsson, A, Heideman, M. Anaphylatoxin generation in acute pancreatitis. J Surg Res 1989; 47: 138–43.CrossRefGoogle ScholarPubMed
65Chenoweth, DE, Cooper, SW, Hugli, THE, Stewart, RW, Blackstone, EH, Kirklin, JW. Complement activation during cardiopulmonary bypass. Evidence for generation of C3a and C5a anaphylatoxins. N Engl J Med 1981; 304: 497503.CrossRefGoogle ScholarPubMed
66Colomb, MG, Arlaud, GJ, Villiers, CL. Structure and activation of CI: current concepts. Complement 1984; 1: 6980.CrossRefGoogle Scholar
67Cooper, NR, Morrison, DC. Binding and activation of the first component of human complement by the lipid A region of lipopolysaccharides. J Immunol 1978; 120: 1862–68.CrossRefGoogle ScholarPubMed
68Porter, RR, Reid, KBM. Activation of the complement system by antibody-antigen complexes: the classical pathway. Adv Protein Chem 1979; 33: 164.CrossRefGoogle ScholarPubMed
69Tenner, AJ, Ziccardi, RJ, Cooper, NR. Antibody-independent Cl activation by E coli. J Immunol 1984; 133: 886–91.CrossRefGoogle Scholar
70Ziccardi, RJ. The role of immune complexes in the activation of the first component of human complement. J Immunol 1984; 132: 283–88.CrossRefGoogle ScholarPubMed
71Pangburn, MK. Activation of complement via the alternative pathway. Fed Proc 1983; 42: 139–43.Google ScholarPubMed
72Gelfand, JA, Donelan, M, Burke, JF. Preferential activation and depletion of the alternative complement pathway by burn injury. Ann Surg 1983; 198: 5862.CrossRefGoogle ScholarPubMed
73Joiner, KA. Role of complement in infectious disease. In: Ross, GD ed, Immunbiology of the complement system. New York: Academic Press, 1986; 183–95.CrossRefGoogle Scholar
74Pangburn, MK, Schreiber, RD, Müller-Eberhard, HJ. C3b deposition during activation of the alternative complement pathway and the effect of deposition on the activating surface. J Immunol 1983; 131: 1930–35.CrossRefGoogle ScholarPubMed
75Hack, CE, Nuijens, JH, Felt-Bersma, RJF, Schreuder, WO, Eerenberg-Belmer, AJM, Paardekooper, J et al. Elevated plasma levels of the anaphylatoxins C3a and C4a are associated with a fatal outcome in sepsis. Am J Med 1989; 86: 2026.CrossRefGoogle ScholarPubMed
76Weinburg, PF, Matthay, MA, Webster, RO, Roskos, KV, Goldstein, IM, Murray, JF. Biologically active products of complement and acute lung injury in patients with the sepsis syndrome. Am Rev Respir Dis 1984; 130: 791–96.Google Scholar
77Slotman, GJ, Burchard, KW, Williams, JJ, D’Arrezzo, A, Yellin, SA. Interaction of prostaglandins, activated complement and granulocytes in clinical sepsis and hypotension. Surgery 1986; 99: 744–50.Google ScholarPubMed
78Langlois, PF, Gawryl, MS. Accentuated formation of the terminal C5b-9 complement complex in patient plasma precedes development of the adult respiratory distress syndrome. Am Rev Respir Dis 1988; 138: 368–75.CrossRefGoogle ScholarPubMed
79Glassman, AB, Bennett, CE, Christopher, JB, Self, S. Immunity during pregnancy: lymphocyte subpopulations and mitogen responsiveness. Ann Clin Lab Sci 1985; 15: 357–62.Google ScholarPubMed
80Coulam, CB, Silverfield, JC, Kazmar, RE, Fathman, CG. T lymphocyte subsets during pregnancy and the menstrual cycle. Am J Reprod Immunol 1983; 4: 8890.CrossRefGoogle ScholarPubMed
81Bach, JF. Transplantation immunity and cytotoxicity phenomena. In: Bach, JF, Schwartz, RS eds, Immunology, 2nd ed. New York: John Wiley and Sons, 1982: 399.Google Scholar
82Taylor, PV, Gowland, G, Hancock, KW, Scott, JS. Effect of length of gestation on maternal cellular immunity to human trophoblast antigens. Am J Obstet Gynecol 1976; 125: 528–31.CrossRefGoogle ScholarPubMed
83Youtananukorn, V, Matangkasombut, P. Specific plasma factors blocking human maternal cell-mediated immune reaction to placental antigens. Nature New Biol 1973; 242: 110–11.CrossRefGoogle ScholarPubMed
84Toder, V, Nebel, L, Gleicher, N. Studies of natural killer cells in pregnancy. I. Analysis at the single cell level. J Clin Lab Immunol 1984; 14: 123–27.Google ScholarPubMed
85Gregory, CD, Shah, LP, Lee, H, Scott, IV, Golding, PR. Gytotoxic reactivity of human natural killer (NK) cells during normal pregnancy: a longitudinal study. J Clin Lab Immunol 1985; 18: 175–81.Google ScholarPubMed
86Pitkin, RM, Witte, DL. Platelet and leukocyte counts in pregnancy. JAMA 1979; 242: 2696–98.CrossRefGoogle ScholarPubMed
87Plum, J, Thierry, M, Sabre, L. Distribution of mononuclear cells during pregnancy. Clin Exp Immunol 1978; 31: 4549.Google ScholarPubMed
88Krause, PJ, Ingardia, CJ, Pontius, LT, Malech, HL, LoBello, TM, Maderazo, EG. Host defence during pregnancy: neutrophil chemotaxis and adherence. Am J Obstet Gynecol 1987; 157: 274–80.CrossRefGoogle ScholarPubMed
89Greer, IA, Haddad, NG, Dawes, J, Johnstone, FD, Calder, AA. Neutrophil activation in pregnancy-induced hypertension. Br J Obstet Gynaecol 1989; 96: 978–82.CrossRefGoogle ScholarPubMed
90Haeger, M, Unander, M, Norder-Hansson, B, Tylman, M, Bengtsson, A. Complement, neutrophil and macrophage activation in women with severe preeclampsia and the syndrome of hemolysis, elevated liver enzymes, and low platelet count. Obstet Gynecol 1992; 79: 1926.Google ScholarPubMed
91Schröksnadel, H, Herold, M, Steckel-Berger, G, Fuchs, D, Wachter, H, Dapunt, O. Zellvermittelte Immunitätbei schwangerschaftsinduzierten Hochdruckerkrankungen (Cell-mediated immunity in hypertensive disorders of pregnancy). Geburtsh u Frauenheilk 1992; 52: 592–95.CrossRefGoogle Scholar
92Hunt, JS, Fishback, JL. Amniochorion: immunological aspects - a review. Am J Reprod Immunol 1989; 21: 114–18.CrossRefGoogle ScholarPubMed
93Ellis, S. HLA-G: at the interface. Am J Reprod Immunol 1990; 23: 8486.Google ScholarPubMed
94Opsjön, S-L, Wathen, NC, Tingulstad, S, Wiedswang, G, Sundan, A, Waage, A et al. Tumor necrosis factor, interleukin-1, and interleukin-6 in normal human pregnancy. Am J Obstet Gynecol 1993; 169: 397404.CrossRefGoogle Scholar
95Marolis, GB, Buckley, RH, Younger, JB. Serum immunoglobulin concentrations during normal pregnancy. Am J Obstet Gynecol 1971; 109: 971–76.CrossRefGoogle Scholar
96Studd, JWW. Immunoglobulins in normal pregnancy, pre-eclampsia and pregnancy complicated by nephrotic syndrome. J Obstet Gynaecol Br Commonwlth 1971; 78: 786–90.CrossRefGoogle ScholarPubMed
97Dodson, MG, Kerman, RH, Lange, CF, Stefani, SS, O’Leary, JA. T and B cells in pregnancy. Obstet Gynecol 1977; 49: 299302.Google Scholar
98Gleicher, N. Autoantibodies in normal and abnormal pregnancy. Am J Reprod Immunol 1992; 28: 269–73.CrossRefGoogle ScholarPubMed
99Massobrio, M, Benedetto, C, Bertini, E, Tetta, C, Camussi, G. Immune complexes in preeclampsia and normal pregnancy. Am J Obstet Gynecol 1985; 152: 578–83.CrossRefGoogle ScholarPubMed
100Jain, A, Rohatgi, P, Singh, VK, Sharma, MK. Circulating immune complexes in preeclampsia. J Indian Med Assoc 1991; 89: 251–53.Google ScholarPubMed
101Faulk, WP, Hunt, JS. Human trophoblast antigens. In: Rubin, JM, Gleicher, N eds, Immunology and allergy clinics of North America, reproductive immunology. Philadelphia: WB Saunders Co, 1990: 2748.Google Scholar
102Hsi, B-L, Hunt, JS, Atkinson, JP. Differential expression of complement regulatory proteins on subpopulations of human trophoblast cells. J Repr Immunol 1991; 19: 209–23.CrossRefGoogle ScholarPubMed
103Holmes, CH, Simpson, KL, Okada, H, Okada, N, Wainwright, SD, Purcell, DF et al. Complement regulatory proteins at the feto-maternal interface during human placental development: distribution of CD59 by comparison with membrane cofactor protein (CD46) and decay accelerating factor (CD55). Eur J Immunol 1992; 22: 1579–85.CrossRefGoogle ScholarPubMed
104Kovar, IZ, Riches, PG. C3 and C4 complement components and acute phase proteins in late pregnancy and parturition. J Clin Pathol 1988; 41: 650–52.CrossRefGoogle ScholarPubMed
105Johnson, U, Gustavii, B. Complement components in normal pregnancy. Acta Pathol Microbiol Immunol Scand (C) 1987; 95: 9799.Google ScholarPubMed
106Haeger, M, Unander, M, Bengtsson, A. Complement activation in relation to development of preeclampsia. Obstet Gynecol 1991; 78: 4649.Google ScholarPubMed
107Chesley, LC. A short history of eclampsia. Obstet Gynecol 1974; 43: 599602.Google Scholar
108Mauriceau, F. Traite des maladies des femmes grosses, et celles qui sont accouchées. Paris: d’Houry, 1964.Google Scholar
109Lindheimer, MD, Katz, AI. Hypertension in pregnancy. N Engl J Med 1985; 313: 675–80.CrossRefGoogle ScholarPubMed
110Montan, S, Sjöberg, N-O, Svenningsen, N. Hypertension in pregnancy - fetal and infant outcome. A cohort study. Clin Exp Hypertens 1987; B6: 337–48.Google Scholar
111MacGillivray, I. Pre-eclampsia: the hypertensive disease of pregnancy. Philadelphia: WB Saunders, 1983.Google Scholar
112De Wolf, F, Robertson, WB, Brosens, I. The ultrastructure of acute atherosis in hypertensive pregnancy. Am J Obstet Gynecol 1975; 123: 164–74.CrossRefGoogle ScholarPubMed
113Ferris, TF. Toxemia and hypertension. In: Burrow, GN, Ferris, TF eds, Medical complications during pregnancy. 3rd ed. Philadelphia: WB Saunders, 1988: 133.Google Scholar
114Pritchard, JA. Hypertensive disorders in pregnancy. In: Pritchard, JA, MacDonald, PC, Gant, NF eds, Williams obstetrics. 17th ed. Connecticut: Appleton-Century-Crofts, 1985: 525–60.Google Scholar
115Kitzmiller, JL, Benirschke, K. Immunofluorescent study of placental bed vessels in pre-eclampsia of pregnancy. Am J Obstet Gynecol 1973; 115: 248–51.CrossRefGoogle ScholarPubMed
116Petrucco, OM, Thomson, NM, Lawrence, JR, Weldon, MW. Immunofluorescent studies in renal biopsies in pre-eclampsia. Br Med J 1974; 1: 473–76.CrossRefGoogle ScholarPubMed
117Tedesco, F, Radillo, O, Candussi, G, Nazzaro, A, Mollnes, TE, Pecorari, D. Immunohistochemical detection of terminal complement complex and S protein in normal and pre-eclamptic placentae. Clin Exp Immunol 1990; 80: 236–40.CrossRefGoogle ScholarPubMed
118Faulk, WP, Temple, A, Lovins, RE, Smith, N. Antigens of human trophoblast: a working hypothesis for their role in normal and abnormal pregnancies. Proc Natl Acad Sci USA 1978; 75: 1947–51.CrossRefGoogle ScholarPubMed
119Campbell, DM, MacGillivray, I, Carr-Hill, R. Pre-eclampsia in second pregnancy. Br J Obstet Gynaecol 1985; 92: 131–40.CrossRefGoogle ScholarPubMed
120Feeney, JG, Scott, JS. Pre-eclampsia and changed paternity. Eur J Obstet Gynecol Repr Biol 1980; 11: 3538.CrossRefGoogle ScholarPubMed
121Ikedife, D. Eclampsia in multiparae. Br Med J 1980; 280: 985–86.CrossRefGoogle Scholar
122Herrman, U, Marti, JJ. Immunogestosis: a new etiologic concept of essential EPH gestosis, with special consideration of the primigravid patient; preliminary report of a clinical study. Am J Obstet Gynecol 1977; 128: 489–93.Google Scholar
123Klonoff-Cohen, HS, Savitz, DA, Cefalo, RC, McCann, MF. An epidemiologic study of contraception and preeclampsia. JAMA 1989; 262: 3143–47.CrossRefGoogle ScholarPubMed
124Need, JA, Bell, B, Meffin, E, Jones, WR. Pre-eclampsia in pregnancies from donor inseminations. J Reprod Immunol 1983; 5: 329–38.CrossRefGoogle ScholarPubMed
125Serhal, PF, Craft, I. Immune basis for preeclampsia: evidence from oocyte recipients. Lancet 1987; 1: 744.CrossRefGoogle Scholar
126Strickland, DM, Guzicks, DS, Cox, K, Gant, NF, Rosenfeld, CR. The relationship between abortion in the first pregnancy and development of pregnancy-induced hypertension in the subsequent pregnancy. Am J Obstet Gynecol 1986; 154: 146–48.CrossRefGoogle ScholarPubMed
127Seidman, DS, Ever-Hadani, P, Stevenson, DK, Gale, R. The effect of abortion on the incidence of preeclampsia. Eur J Obstet Gynecol Repr Biol 1989; 33: 109–14.CrossRefGoogle Scholar
128Toivanen, P, Hirvonen, T. Sex ratio of newborns: preponderance of males in toxemia of pregnancy. Science 1970; 170: 187–88.CrossRefGoogle ScholarPubMed
129James, WH. The human sex ratio. Part 1: a review of the literature. Hum Biol 1987; 59: 721–52.Google ScholarPubMed
130Feeney, JG, Tovey, LAD, Scott, JS. Influence of previous blood-transfusion on incidence of pre-eclampsia. Lancet 1977; 1: 874–75.CrossRefGoogle ScholarPubMed
131Arngrimsson, R, Bjornsson, S, Geirsson, RT, Bjornsson, H, Walker, JJ, Snaedal, G. Genetic and familial predisposition to eclampsia and pre-eclampsia in a defined population. Br J Obstet Gynaecol 1990; 97: 762–69.CrossRefGoogle Scholar
132Robertson, WB, Brosens, I, Dixon, HG. The pathological response of the vessels of the placental bed to hypertensive pregnancy. J Pathol Bacteriol 1967; 93: 581–92.CrossRefGoogle ScholarPubMed
133Cignetti, M, Garzetti, GG, Marchegiani, F, Fabris, N, Romanini, C. Natural killer cells and Tac antigen in the hypertension of pregnancy. Clin Exp Obstet Gynecol 1990; 17: 1315.Google ScholarPubMed
134Bardeguez, AD, McNerney, R, Frieri, M, Verma, UL, Tejani, N. Cellular immunity in preeclampsia: alterations in T-lymphocyte subpopulations during early pregnancy. Obstet Gynecol 1991; 77: 859–62.Google ScholarPubMed
135Schroksnadel, H, Fuchs, D, Herold, D, Wachter, H, Dapunt, O. Activated macrophages in preeclampsia. Pteridines 1993; 4: 144–48.CrossRefGoogle Scholar
136Pacher, R, Redl, H, Frass, M, Petzl, DH, Schuster, E, Woloszczuk, W. Relationship between neopterin and granulocyte elastase plasma levels and the severity of multiple organ failure. Crit Care Med 1989; 17: 221–26.CrossRefGoogle ScholarPubMed
137Strohmaier, W, Redl, H, Schlag, G, Inthorn, D. D-erythro-neopterin plasma levels in intensive care patients with and without septic complications. Crit Care Med 1987; 15: 757–60.CrossRefGoogle ScholarPubMed
138Haeger, M, Unander, M, Bengtsson, A. Neopterin PMN elastase, and complement components as monitoring parameters in women with the syndrome of hemolysis, elevated liver enzymes and low platelet count. Pteridines 1993; 4: 138–43.CrossRefGoogle Scholar
139Goris, RJA. Multiple organ failure: whole body inflammation? Schweiz med Wochenschr 1989; 119: 347–53.Google ScholarPubMed
140Jenkins, DM, Need, JA, Scott, JS, Morris, H, Pepper, M. Human leukocyte antigens and mixed lymphocyte reaction in severe preeclampsia. Br Med J 1978; 1: 542–44.CrossRefGoogle Scholar
141Johnson, N, Moodley, J, Hammond, MG. Human leukocyte antigen status in African women with eclampsia. Br J Obstet Gynaecol 1988; 95: 877–79.CrossRefGoogle ScholarPubMed
142Redman, CWG, Bodmer, WF, Bodmer, JG, Beilin, LJ, Bonnar, J. HLA antigens in severe preeclampsia. Lancet 1978; 2: 397–99.CrossRefGoogle Scholar
143Kilpatrick, DC, Liston, WA, Gibson, F, Livingstone, J. Association between susceptibility to preeclampsia within families and HLA-DR4. Lancet 1989; 2: 1063–65.CrossRefGoogle ScholarPubMed
144Hoff, C, Stevens, RG, Mendenhall, H, Peterson, RDA, Spinnato, JA. Association between risk for preeclampsia and HLA-DR4. Lancet 1990; 1: 660–61.CrossRefGoogle Scholar
145Wilton, AN, Cooper, DW, Brennecke, SP, Bishop, SM, Marshall, P. Absence of close linkage between maternal genes for susceptibility to preeclampsia/eclampsia and HLA-DR beta. Lancet 1990; 336: 653–57.CrossRefGoogle Scholar
146Houwert-de Jong, MH, Claas, FHJ, Gmelig-Meyling, FHJ, Kalsbeek, GL, Valentijn, RM, the Velde, ER et al. Humoral immunity in normal and complicated pregnancy. Eur J Obstet Gynecol Reprod Biol 1985; 19: 205–14.CrossRefGoogle ScholarPubMed
147Kaku, M. Placental polysaccharide and the aetiology of the toxaemia of pregnancy. J Obstet Gynaecol Br Emp 1957; 60: 148–56.CrossRefGoogle Scholar
148Hulka, JF, Brinton, V. Antibody to trophoblast during early postpartum period in toxemic pregnancy. Am J Obstet Gynecol 1963; 86: 130–34.CrossRefGoogle Scholar
149Gaugas, JM, Curzen, P. Complement fixing antibody against solubilized placental microsomal fraction in pre-eclampsia sera. Br J Pathol 1974; 55: 570–73.Google ScholarPubMed
150Thiry, L, Yane, F, Sprecher-Goldberger, S, Cappel, R, Bossens, M, Neuray, F. Expression of retrovirus related antigen in pregnancy. II. Cytotoxic and blocking specificities in immunoglobulins eluted from the placenta. J Reprod Immunol 1981; 2: 323–30.CrossRefGoogle ScholarPubMed
151Bieglmayer, C, Rudelstorfer, R, Bartl, W, Janisch, H. Detection of antibodies in pregnancy serum reacting with isolated placental basement membrane collagen. Br J Obstet Gynaecol 1986; 93: 815–22.CrossRefGoogle ScholarPubMed
152Branch, DW, Andres, R, Digre, KB, Rote, NS, Scott, JR. The association of antiphospholipid antibodies with severe preeclampsia. Obstet Gynecol 1989; 73 541–45.Google ScholarPubMed
153Alanen, A. Serum IgE and smooth muscle antibodies in preeclampsia. Ada Obstet Gynecol Scand 1984; 63: 581–82.CrossRefGoogle ScholarPubMed
154Foidart, JM, Hunt, J, Lapiere, C-M, Nusgens, B, De Rycker, C, Bruwier, M et al. Antibodies to laminin in preeclampsia. Kidney Int 1986; 29: 1050–57.CrossRefGoogle ScholarPubMed
155Samuels, P, Main, EK, Tomaski, A, Mennuti, MT, Gabbe, SG, Cines, DB. Abnormalities in platelet antiglobulin tests in preeclamptic mothers and their neonates. Am J Obstet Gynecol 1987; 157: 109–13.CrossRefGoogle ScholarPubMed
156Rapaport, VJ, Hirata, G, Yap, HK, Jordan, SC. Anti-vascular endothelial cell antibodies in severe preeclampsia. Am J Obstet Gynecol 1990; 162: 138–46.CrossRefGoogle Scholar
157Haeger, M, Unander, AM, Bengtsson, A. Enhanced anaphylatoxin and terminal C5b-9 complement formation in patients with the syndrome of hemolysis, elevated liver enzymes and low platelet count. Obstet Gynecol 1990; 76: 698702.Google ScholarPubMed
158Loke, YW, Joysey, VG, Borland, R. HL-A antigens on human trophoblast cells. Nature 1971; 232: 403405.CrossRefGoogle ScholarPubMed
159Bengtsson, A, Heideman, M. Altered anaphylatoxin activity during induced hypoperfusion in acute and elective abdominal aortic surgery. J Trauma 1986; 26: 631–37.CrossRefGoogle Scholar
160Bengtsson, A, Haljamae, H. Complement activation and organ function in critically ill surgical patients. Acute Care 19881989; 14–15: 111–37.Google Scholar
161Bengtsson, A, Holmberg, P, Heideman, M. The ischaemic leg as a source of complement activation. BrJSurg 1987; 74: 697700.Google Scholar
162Chenoweth, DE, Hugli, TE. Demonstration of specific C5a receptor on intact human polymorphonuclear leukocytes. Proc Natl Acad Sci USA 1978; 75: 3943–47.CrossRefGoogle ScholarPubMed
163Walport, M. Complement. In: Roitt, I, Brostoff, J, Male, D eds, Immunology, 2nd ed. London: Churchill Livingstone, 1989: 13.113.16.Google Scholar
164Hangen, DH, Stevens, JG, Satoh, PS, Hall, EW, O'Hanley, PT, Raffin, TA. Complement levels in septic primates treated with anti-C5a antibodies. J Surg Res 1989; 46: 195–99.CrossRefGoogle ScholarPubMed
165Greer, IA, Haddad, NG, Dawes, J, Johnston, TA, Johnstone, FD, Steel, JM. Increased neutrophil activation in diabetic pregnancy and in nonpregnant diabetic women. Obstet Gynecol 1989; 74: 878–81.Google ScholarPubMed
166Sunder-Plassmann, G, Stockenhuber, F, Balcke, P. Serum interleukin 2 activity in renal graft recipients. Transplant Proc 1988; 20: 387–89.Google ScholarPubMed
167Sunder-Plassmann, G, Derfler, K, Wagner, L, Stockenhuber, F, Endler, M, Nowotny, C et al. Increased serum activity of interleukin-2 in patients with pre-eclampsia. J Autoimmun 1989; 2: 203205.CrossRefGoogle ScholarPubMed
168Weisman, HF, Bartow, T, Leppo, MK, March, HC Jr, Carson, GR, Concino, MF et al. Soluble human complement receptor type 1: in vivo inhibitor of complement suppressing postischemic myocardial inflammation and necrosis. Science 1990; 249: 146–51.CrossRefGoogle ScholarPubMed
169Yeh, CG, Marsh, HC Jr, Carson, GR, Berman, L, Concino, MF, Scesney, SM et al. Recombinant soluble human complement receptor type 1 inhibits inflammation in the reversed passive Arthus reaction in rats. J Immunol 1991; 146: 250–56.CrossRefGoogle ScholarPubMed
170Gerard, NP, Gerard, C. The chemotactic receptor for human C5a anaphylatoxin. Nature 1991; 349: 614–17.CrossRefGoogle ScholarPubMed
171Exley, AR, Cohen, J, Buurman, W, Owen, R, Hanson, G, Lumley, J et al. Monoclonal antibody to TNF in severe septic shock. Lancet 1990; 1: 1275–76.CrossRefGoogle Scholar
172Manning, PJ, Watson, RM, Margolskee, DJ, Williams, VC, Schwartz, JI, O'Byrne, PM. Inhibition of exercise-induced bronchoconstriction by MK-571, a potent leukotriene D4-receptor antagonist. N Engl J Med 1990; 323: 1736–39.CrossRefGoogle ScholarPubMed
173Mandell, GL. ARDS, neutrophils, and pentoxifylline. Am Rev Respir Dis 1988; 138: 1103–105.CrossRefGoogle ScholarPubMed