Hostname: page-component-848d4c4894-p2v8j Total loading time: 0 Render date: 2024-06-08T19:38:25.032Z Has data issue: false hasContentIssue false

MODULI SPACES OF RATIONAL WEIGHTED STABLE CURVES AND TROPICAL GEOMETRY

Published online by Cambridge University Press:  03 June 2016

RENZO CAVALIERI
Affiliation:
Department of Mathematics, Colorado State University, USA; renzo@math.colostate.edu
SIMON HAMPE
Affiliation:
Institut für Mathematik, Technische Universitaät Berlin, Germany; hampe@math.tu-berlin.de
HANNAH MARKWIG
Affiliation:
Fachbereich Mathematik, Eberhard Karls Universität Tübingen, Germany; hannah@mathematik.uni-tuebingen.de
DHRUV RANGANATHAN
Affiliation:
Department of Mathematics, Yale University, USA; dhruv.ranganathan@yale.edu

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We study moduli spaces of rational weighted stable tropical curves, and their connections with Hassett spaces. Given a vector $w$ of weights, the moduli space of tropical $w$-stable curves can be given the structure of a balanced fan if and only if $w$ has only heavy and light entries. In this case, the tropical moduli space can be expressed as the Bergman fan of an explicit graphic matroid. The tropical moduli space can be realized as a geometric tropicalization, and as a Berkovich skeleton, its algebraic counterpart. This builds on previous work of Tevelev, Gibney and Maclagan, and Abramovich, Caporaso and Payne. Finally, we construct the moduli spaces of heavy/light weighted tropical curves as fibre products of unweighted spaces, and explore parallels with the algebraic world.

Type
Research Article
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
© The Author(s) 2016

References

Abramovich, D., Caporaso, L. and Payne, S., ‘The tropicalization of the moduli space of curves’, Ann. Sci. Éc. Norm. Supér. (4) 48 (2015), 765809.Google Scholar
Allermann, L. and Rau, J., ‘First steps in tropical intersection theory’, Math. Z. 264 (2010), 633670.Google Scholar
Ardila, F. and Klivans, C., ‘The Bergman complex of a matroid and phylogenetic trees’, J. Combin. Theory Ser. B 96 (2006), 3849.Google Scholar
Batyrev, V. and Blume, M., ‘The functor of toric varieties associated with Weyl chambers and Losev-Manin moduli spaces’, Tohoku Math. J. (2) 63 (2011), 581604.Google Scholar
Billera, L., Holmes, S. and Vogtmann, K., ‘Geometry of the space of phylogenetic trees’, Adv. Appl. Math. 27 (2001), 733767.CrossRefGoogle Scholar
Cueto, M. A., ‘Implicitization of surfaces via geometric tropicalization’, Preprint, 2011, arXiv:1105.0509.Google Scholar
Feichtner, E. M. and Sturmfels, B., ‘Matroid polytopes, nested sets and Bergman fans’, Port. Math. 62 (2005), 437468.Google Scholar
François, G. and Hampe, S., ‘Universal families of rational tropical curves’, Canad. J. Math. 65 (2013), 120148.CrossRefGoogle Scholar
François, G. and Rau, J., ‘The diagonal of tropical matroid varieties and cycle intersections’, Collect. Math. 64 (2013), 185210.Google Scholar
Gathmann, A., Kerber, M. and Markwig, H., ‘Tropical fans and the moduli space of rational tropical curves’, Compos. Math. 145 (2009), 173195.CrossRefGoogle Scholar
Gibney, A. and Maclagan, D., ‘Equations for Chow and Hilbert Quotients’, J. Algebra Number Theory 4 (2010), 855885. arXiv:0707.1801.Google Scholar
Hacking, P., Keel, S. and Tevelev, J., ‘Stable pair, tropical, and log canonical compactifications of moduli spaces of del Pezzo surfaces’, Invent. Math. 178 (2009), 173227.Google Scholar
Hassett, B., ‘Moduli spaces of weighted pointed stable curves’, Adv. Math. 173 (2003), 316352.Google Scholar
Kapranov, M., ‘Chow quotients of Grassmannians. I’, IM Gelf and Seminar 16 (1993), 29110.Google Scholar
Katz, E., ‘Tropical intersection theory from toric varieties’, Collect. Math. 63 (2012), 2944.Google Scholar
Katz, E., ‘Matroid theory for algebraic geometers’, inNonarchimedean and Tropical Geometry (eds. Baker, M. and Payne, S.) (Springer, Berlin, 2016), to appear.Google Scholar
Kempf, G., Knudsen, F., Mumford, D. and Saint-Donat, B., Toroidal Embeddings I, Lecture Notes in Mathematics 339 (Springer, Berlin, 1973).Google Scholar
Kerber, M. and Markwig, H., ‘Intersecting Psi-classes on tropical M 0, n ’, Int. Math. Res. Not. IMRN 2009(2) (2009), 221240.Google Scholar
Losev, A. and Manin, Y., ‘New moduli spaces of pointed curves and pencils of flat connections’, Michigan Math. J. 48 (2000), 443472.Google Scholar
Maclagan, D. and Sturmfels, B., Introduction to Tropical Geometry, Graduate Studies in Mathematics 161 (American Mathematical Society, Providence, RI, 2015).Google Scholar
Mikhalkin, G., ‘Enumerative tropical geometry in ℝ2 ’, J. Amer. Math. Soc. 18 (2005), 313377.Google Scholar
Mikhalkin, G., ‘Moduli spaces of rational tropical curves’, inProceedings of Gökova Geometry-Topology Conference GGT (2007), 3951.Google Scholar
Speyer, D. and Sturmfels, B., ‘The tropical Grassmannian’, Adv. Geom. 4 (2004), 389411.Google Scholar
Tevelev, J., ‘Compactifications of subvarieties of tori’, Amer. J. Math. 129 (2007), 10871104.Google Scholar
Thuillier, A., ‘Géométrie toroïdale et géométrie analytique non archimédienne. Application au type d’homotopie de certains schémas formels’, Manuscripta Math. 123 (2007), 381451.CrossRefGoogle Scholar
Ulirsch, M., ‘Tropical geometry of moduli spaces of weighted stable curves’, J. Lond. Math. Soc. (2) 92 (2015), 427450.Google Scholar