Hostname: page-component-848d4c4894-ttngx Total loading time: 0 Render date: 2024-06-01T05:49:02.429Z Has data issue: false hasContentIssue false

Autosomal genetic maps of the Australian Sheep Blowfly, Lucilia cuprina dorsalis R.-D. (Diptera: Calliphoridae), and possible correlations with the linkage maps of Musca domestica L. and Drosophila melanogaster (Mg.)

Published online by Cambridge University Press:  14 April 2009

G. G. Foster
Affiliation:
CSIRO Division of Entomology, P.O. Box 1700, Canberra City, A.C.T. 2601, Australia
M. J. Whitten
Affiliation:
CSIRO Division of Entomology, P.O. Box 1700, Canberra City, A.C.T. 2601, Australia
C. Konovalov
Affiliation:
CSIRO Division of Entomology, P.O. Box 1700, Canberra City, A.C.T. 2601, Australia
J. T. A. Arnold
Affiliation:
CSIRO Division of Entomology, P.O. Box 1700, Canberra City, A.C.T. 2601, Australia
G. Maffi
Affiliation:
CSIRO Division of Entomology, P.O. Box 1700, Canberra City, A.C.T. 2601, Australia

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Linkage data and revised maps for 52 autosomal loci in L. cuprina are presented. Examination of the linkage relationships of biochemically and morphologically similar mutations in L. cuprina, Musca domestica L. and Drosophila melanogaster (Mg) suggests that the major linkage groups have survived largely intact during the evolution of the higher Diptera.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1981

References

REFERENCES

Arnold, J. T. A. & Whitten, M. J. (1976). The genetic basis for organophosphorus resistance in the Australian sheep blowfly, Lucilia cuprina (Weidemann) (Diptera: Calliphoridae). Bulletin of Entomological Research 66, 561568.CrossRefGoogle Scholar
Barton Browne, L., van Gerwen, A. C. M. & Williams, K. L. (1979). Oocyte resorption during ovarian development in the blowfly Lucilia cuprina. Journal of Insect Physiology 25, 147153.CrossRefGoogle Scholar
Beadle, G. W. (1932). A possible influence of the spindle fibre on crossing-over in Drosophila. Proceedings of the National Academy of Sciences, U.S.A. 18, 160165.CrossRefGoogle ScholarPubMed
Berman, D. M. L. (1975). The mapping and formal genetics of isozyme loci in the Australian sheep blowfly Lucilia cuprina (Weidemann). M.Sc. thesis, The Australian National University, Canberra.Google Scholar
Boyes, J. W. (1967). The cytology of muscoid flies. In: Genetics of Insect Vectors of Disease (ed. Wright, J. W. and Pal, R.), pp. 371384. Amsterdam: Elsevier.Google Scholar
Foster, G. G., Kitching, R. L., Vogt, W. G. & Whitten, M. J. (1975). Sheep blowfly and its control in the pastoral ecosystem of Australia. Proceedings of the Ecological Society of Australia 9, 213229.Google Scholar
Foster, G. G., Whitten, M. J.Konovalov, C.Bedo, D. G., Maddern, R. H. & Boon, D. J. (1980). Cytogenetic studies of Lucilia cuprina dorsalis R.-D. (Diptera: Calliphoridae). Polytene chromosome maps of the autosomes and cytogenetic locations of visible genetic markers. Chromosoma (Berl.). (In the Press.)Google Scholar
Foster, G. G., Whitten, M. J., Vogt, W. G., Woodburn, T. L. & Arnold, J. T. (1978). Larval release method for genetic control of the Australian sheep blowfly, Lucilia cuprina (Weidemann) (Diptera: Calliphoridae). Bulletin of Entomological Research 68, 7583.CrossRefGoogle Scholar
Hackman, R. H. & Goldberg, M. (1968). A study of a melanic mutant of the blowfly Lucilia cuprina. Journal of Insect Physiology 14, 765775.CrossRefGoogle Scholar
Hiroyoshi, T. (1977). Some new mutants and revised linkage maps of the housefly, Musca domestica L. Japanese Journal of Genetics 52, 275288.Google Scholar
Howells, A. J., Summers, K. M. & Ryall, R. L. (1977). Developmental patterns of 3-hydroxykynurenine accumulation in white and various other eye colour mutants of Drosophila melanogaster. Biochemical Genetics 15, 10491059.CrossRefGoogle ScholarPubMed
Kemp, D. J., Thomson, J. A., Peacock, W. J. & Higgins, T. J. V. (1978). Messenger RNA for the insect storage protein calliphorin: in vitro translation and chromosomal hybridization analyses of a 20S poly (A) RNA fraction. Biochemical Genetics 16, 355371.CrossRefGoogle Scholar
La Chance, L. E., Dawkins, C. & Hopkins, D. E. (1966). Mutants and linkage groups of the screw-worm fly. Journal of Economic Entomology 59, 14931499.CrossRefGoogle ScholarPubMed
Lindsley, D. L. & Grell, E. H. (1968). Genetic Variations of Drosophila melanogaster. Carnegie Institute of Washington Publ. No. 627, 472 pp.Google Scholar
Milani, R. (1967). The genetics of Musca domestica and of other muscoid flies. In Genetics of Insect Vectors of Disease (ed. Wright, J. W. and Pal, R.), pp. 315369. Amsterdam: Eisevier.Google Scholar
Milani, R. (1975). The house fly, Musca domestica. In: Handbook of Genetics, vol. 3 (ed. King, R. C.), pp. 377399. New York: Plenum.Google Scholar
O–Brien, S. J. & MacIntyre, R. J. (1978). Genetics and biochemistry of enzymes and specific proteins of Drosophila. In The Genetics and Biology of Drosophila, vol. 2 a (eds. Ashburner, M. and Wright, T. R. F.), pp. 395551. London: Academic Press.Google Scholar
Roberts, D. B. & Evans-Roberts, S. (1979). The genetic and cytogentic localization of the three structural genes coding for the main protein of Drosophila larval serum. Genetics 93, 663679.CrossRefGoogle Scholar
Roberts, D. B., Wolfe, J. & Akam, M. E. (1977). The developmental profiles of the two major haemolymph proteins from Drosophila melanogaster. Journal of Insect Physiology 23, 871878.CrossRefGoogle ScholarPubMed
Stevens, W. L. (1936). The analysis of interference. Journal of Genetics, 32, 5164.CrossRefGoogle Scholar
Sturtevant, A. H. & Novitski, E. (1941). The homologies of the chromosome elements in the genus Drosophila. Genetics 26, 517541.CrossRefGoogle ScholarPubMed
Summers, K. M. & Howells, A. J. (1978). Xanthommatin biosynthesis in wild type and mutant strains of the Australian sheep blowfly Lucilia cuprina. Biochemical Genetics 16, 11531163.CrossRefGoogle ScholarPubMed
Summers, K. M. & Howells, A. J. (1980). Pteridines in wild type and eye colour mutants of the Australian sheep blowfly, Lucilia cuprina. Insect Biochemistry. (In the Press.)CrossRefGoogle Scholar
Thomson, J. A., Radok, K. R., Shaw, D. C., Whitten, M. J., Foster, G. G. & Birt, L. M. (1976). Genetics of lucilin, a storage protein from the sheep blowfly, Lucilia cuprina (Calliphoridae). Biochemical Genetics 14, 145160.CrossRefGoogle ScholarPubMed
Ullerich, F. (1963). Geschlechtschromosomen und Geschlechstsbestimmung bei einigen Calliphorinen, (Calliphoridae, Diptera). Chromosoma (Berl.) 14, 45110.CrossRefGoogle Scholar
Vogt, W. G. & Woodburn, T. L. (1980). The influence of temperature and moisture on survival and duration of the egg stage of the Australian Sheep Blowfly, Lucilia cuprina (Weidemann). Bulletin of Entomological Research. (In the Press.)CrossRefGoogle Scholar
Wagoner, D. E. (1967). Linkage group-karyotype correlation in the house fly determined by cytological analysis of X-ray induced translocations. Genetics 57, 729739.CrossRefGoogle ScholarPubMed
Whitten, M. J. & Foster, G. G. (1975). Genetical methods of pest control. Annual Review of Entomology 20, 461476.CrossRefGoogle ScholarPubMed
Whitten, M. J., Foster, G. G., Arnold, J. T. & Konowalow, C. (1975). The Australian sheep blowfly, Lucilia cuprina. In Handbook of Genetics, vol. 3 (ed. King, R. C.), 874 pp; pp. 401418. New York: Plenum.Google Scholar
Whitten, M. J., Foster, G. G., Vogt, W. G., Kitching, R. L., Woodburn, T. L. & Konovalov, C. (1977). Current status of genetic control of the Australian sheep blowfly, Lucilia cuprina (Wiedemann) (Diptera: Calliphoridae). Proceedings of the XV International Congress of Entomology, Washington, D.C., 1976, pp. 129139.Google Scholar
Woodburn, T. L., Vogt, W. G. & Kitching, R. L. (1978). Estimation of age of females in field populations of Lucilia cuprina (Weidmann) (Diptera: Calliphoridae) using ambient temperature and solar radiation. Bulletin of Entomological Research 68, 251261.CrossRefGoogle Scholar