Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-06-02T17:41:02.589Z Has data issue: false hasContentIssue false

Dust and Ionized Gas in Active Radio Elliptical Galaxies

Published online by Cambridge University Press:  12 April 2016

D.A. Forbes
Affiliation:
Space Telescope Science Institute, 3700 San Martin Drive, Baltimore MD 21218* Institute of Astronomy, Madingley Road, Cambridge CB3 OHA, U.K.
W.B. Sparks
Affiliation:
Space Telescope Science Institute, 3700 San Martin Drive, Baltimore MD 21218*
F.D. Macchetto
Affiliation:
Space Telescope Science Institute, 3700 San Martin Drive, Baltimore MD 21218* Affiliated with the Astrophysics Division, Space Science Department, European Space Agency (ESA)

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present broad and narrow bandwidth imaging of three southern elliptical galaxies which have flat-spectrum active radio cores (NGC 1052, IC 1459 and NGC 6958). All three contain dust and extended low excitation optical line emission, particularly extensive in the case of NGC 1052 which has a large Hα + [Nil] luminosity. Both NGC 1052 and IC 1459 have a spiral morphology in emission-line images. All three display independent strong evidence that a merger or infall event has recently occurred, i.e., extensive and infalling HI gas in NGC 1052, a counter-rotating core in IC 1459 and Malin-Carter shells in NGC 6958. This infall event is the most likely origin for the emission-line gas and dust, and we a currently investigating possible excitation mechanisms (Sparks et al. 1990).

Type
V. Observations of Nuclear and Near-Nuclear Activity
Copyright
Copyright © NASA 1990

References

Balcells, M., and Quinn, P. J. 1989, Astrophys. and Space Sci., 156 133.Google Scholar
Baum, S. A., et al. 1988, Ap. J. (Suppl, 68, 833.Google Scholar
Bender, R., et al. 1989, Astron. and Astr., 217 35.Google Scholar
Davies, R. L., and Illingworth, G. 1986, Ap. J., 302 234.Google Scholar
Evans, D. S. 1951, M. N. R. A. S., 111 526.Google Scholar
Fabbiano, G., Gioia, I. M., and Trinchieri, G. 1989, Ap. J., 347 127.Google Scholar
Fosbury, R. A. E., et al. 1978, M. N. R. A. S., 183 549.Google Scholar
Franx, M., and Illingworth, G. 1988, Ap. J. (Letters), 327, L55.CrossRefGoogle Scholar
Malin, D. F. 1985, in New Aspects of Galaxy Photometry, ed. Nieto, J. L. (Berlin: Springer-Verlag) p 27.Google Scholar
Quinn, P. J. 1984, Ap. J., 279 596.Google Scholar
Knapp, G. R., Kerr, F. J., and Williams, B. A. 1978, Ap. J., 222 800.Google Scholar
Knapp, G. R., Beis, W. E., and van Gorkom, J. H. 1989, preprint.Google Scholar
Sparks, W. B., et al. 1984, M. N. R. A. S., 207 445.Google Scholar
Sparks, W. B., et al. 1985, M. N. R. A. S., 217 87.Google Scholar
Sparks, W. B., Hough, J. H., Axon, D. J., and Bailey, J. 1986, M. N. R. A. S., 218 429.Google Scholar
Sparks, W. B., Macchetto, F. D., and Golombek, D. 1989, Ap. J., 345 153.Google Scholar
Sparks, W. B., Forbes, D. A., Macchetto, F. D. and Golombek, D. 1990, in preparation.Google Scholar
Thomas, P. A., et al. 1986, M. N. R. A. S., 222 655.Google Scholar
van Gorkom, J. H., et al. 1986, A. J., 91 791.Google Scholar
Walsh, D. E. P., et al. 1989, submitted to Ap. J.Google Scholar
Williams, T. B., and Schwarzchild, M. 1979, Ap. J., 227 56.Google Scholar
Wilkinson, A., Browne, I. W. A., and Wolstencroft, R. D. 1987, M. N. R. A. S., 228 933.Google Scholar
Wrobel, J. M. 1984, Ap. J., 284 531.CrossRefGoogle Scholar