Hostname: page-component-848d4c4894-p2v8j Total loading time: 0.001 Render date: 2024-06-04T23:27:08.429Z Has data issue: false hasContentIssue false

The ultimate cataclysm: the orbital (in)stability of terrestrial planets in exoplanet systems including planets in binaries

Published online by Cambridge University Press:  05 August 2009

Elke Pilat-Lohinger
Affiliation:
Institute for Astronomy, University of Vienna, Tuerkenschanzstrasse 17, A-1180 Vienna, Austria e-mail: lohinger@astro.univie.ac.at

Abstract

There is no doubt that stability studies are of great importance in the fascinating research of extrasolar planetary systems. Even if most of the more than 300 extrasolar planets orbit their host stars as single giant planet and build simple two-body systems, we should not exclude the possibility that these systems could host other (small) planets that have not yet been detected due to obsevational limits. Another aspect to carry out stability studies is the growing interest in the search for extraterrestrial life in the universe. The long-term stability of a planetary system is one of the basic requirements for the evolution of life on a terrestrial planet. In this paper the dynamical behaviour of Earth-like planets will be discussed in single-star single-giant-planet systems, multi-planet systems and binary systems.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bois, E., Kiseleva-Eggleton, L., Rambaux, N. & Pilat-Lohinger, E. (2003). Conditions of Dynamical Stability for the HD 160691 Planetary System. Astrophys. J. 598, 1312.CrossRefGoogle Scholar
Cochran, W.D., Hatzes, A.P., Endl, M., Paulson, D.B., Walker, G.A.H., Campbell, B. & Yang, S. (2002). A Planetary Companion to the Binary Star Gamma Cephei. Bull. Am. Astron. Soc. 34, 916.Google Scholar
Duquennoy, A. & Mayor, M. (1991). Multiplicity among solar-type stars in the solar neighbourhood. II - Distribution of the orbital elements in an unbiased sample. A&A 248, 485.Google Scholar
Dvorak, R. (1984). Numerical experiments on planetary orbits in double stars. Celestial Mech. Dyn. Astron. 34, p. 369.CrossRefGoogle Scholar
Dvorak, R. (1986). Critical orbits in the elliptic restricted three-body problem. Astron. Astrophys. 167, 379.Google Scholar
Dvorak, R., Froeschlé, Ch. & Froeschlé, C. (1989). Stability of outer planetary orbits (P-types) in binaries. Astron. Astrophys. 226, 335.Google Scholar
Dvorak, R., Pilat-Lohinger, E., Funk, B. & Freistetter, F. (2003a). Planets in habitable zones:. A study of the binary Gamma Cephei. Astron. Astrophys. 398, L1.CrossRefGoogle Scholar
Dvorak, R., Pilat-Lohinger, E., Funk, B. & Freistetter, F. (2003b). A study of the stable regions in the planetary system HD 74156 - Can it host earthlike planets in habitable zones?. Astron. Astrophys. 410, L13.CrossRefGoogle Scholar
Dvorak, R., Pilat-Lohinger, E., Schwarz, R. & Freistetter, F. (2004). Extrasolar Trojan planets close to habitable zones. A&A. 426, p. L37.Google Scholar
Érdi, B., Dvorak, R., Sándor, Zs. & Pilat-Lohinger, E. (2004). The dynamical structure of the habitable zone in the HD 38529, HD 168443 and HD 169830 systems. Mon. Not. Roy. Astron. Soc. 351, 1943.CrossRefGoogle Scholar
Érdi, B. & Sándor, Zs. (2005). Stability of Co-Orbital Motion in Exoplanetary Systems. Celestial Mech. Dyn. Astron. 92, 113.CrossRefGoogle Scholar
Ferraz-Mello, S., Michtchenko, T.A. & Beaugé, C. (2005a). The Orbits of the Extrasolar Planets HD 82943c and b. Astrophys. J. 621, 473.CrossRefGoogle Scholar
Ferraz-Mello, S., Michtchenko, T.A., Beaugé, C., Callegari, N. & Callegi , Jr. (2005b). Extrasolar Planetary Systems. LNP Proceedings, Vol. 683, ed. Dvorak, R. et al. , p. 219. Springer, Heidelberg.Google Scholar
Forget, F. & Pierrehumbert, R.T. (1997). Warming Early Mars with Carbon Dioxide Clouds That Scatter Infrared Radiation. Science 278, 1273.CrossRefGoogle ScholarPubMed
Froeschlé, C., Lega, E. & Gonczi, R. (1997). Fast Lyapunov Indicators. Application to Asteroidal Motion. Celestial Mech. Dyn. Astron. 67, 41.CrossRefGoogle Scholar
Funk, B., Pilat-Lohinger, E., Dvorak, R.Freistetter, F. & Érdi, B. (2004). Resonances in Multiple Planetary Systems. Celestial Mech. Dyn. Astron. 90, 43.CrossRefGoogle Scholar
Funk, B., Schwarz, R., Pilat-Lohinger, E., Süli, Á. & Dvorak, R. (2009). Stability of inclined orbits of terrestrial planets in habitable zones. Planet Space Sci. 57, 434.CrossRefGoogle Scholar
Gaudi, B.S. et al. (2008). Discovery of a Very Bright, Nearby Gravitational Microlensing Event. Astrophys. J. 677, 1268.CrossRefGoogle Scholar
Holman, M.J. & Wiegert, P.A. (1999). Long-Term Stability of Planets in Binary Systems. Astron. J. 117, 621.CrossRefGoogle Scholar
Kasting, J.F, Whitmire, D.P. & Reynolds, R.T. (1993). Habitable Zones around Main Sequence Stars. Icarus 101, 108.CrossRefGoogle ScholarPubMed
Laughlin, G. & Chambers, J.E. (2002). Extrasolar Trojans: The Viability and Detectability of Planets in the 1:1 Resonance. Astron. J. 124, 592.CrossRefGoogle Scholar
Michtchenko, T. & Malhotra, R. (2004). Secular dynamics of the three-body problem: application to the υ Andromedae planetary system. Icarus 168, 237.CrossRefGoogle Scholar
Michtchenko, T., Ferraz-Mello, S. & Beaugé, C. (2007). Dynamics of the Extrasolar Planetary Systems. Extrasolar Planets. Formation, Detection and Dynamics, ed. Dvorak, R., p. 151. Wiley-VCH, Weinheim.CrossRefGoogle Scholar
Mischna, M.A., Kasting, J.F., Pavlov, A. & Freedman, R. (2000). Influence of carbon dioxide clouds on early martian climate. Icarus, 145, 546.CrossRefGoogle ScholarPubMed
Mugrauer, M. & Neuhäuser, R. (2005). Gl86B: a white dwarf orbits an exoplanet host star. Mon. Not. Roy. Astron. Soc. 361, L15.CrossRefGoogle Scholar
Mugrauer, M. & Neuhäuser, R. (2009). The multiplicity of exoplanet host stars. New low-mass stellar companions of the exoplanet host stars HD 125612 and HD 212301. Astron. Astrophys. 494, 373.CrossRefGoogle Scholar
Pilat-Lohinger, E. & Dvorak, R. (2002). Stability of S-type Orbits in Binaries. Celestial Mech. Dyn. Astron. 82, 143.CrossRefGoogle Scholar
Pilat-Lohinger, E., Funk, B. & Dvorak, R. (2003). Stability limits in double stars. A study of inclined planetary orbits. Astron. Astrophys. 400, 1085.CrossRefGoogle Scholar
Pilat-Lohinger, E. (2005). Planetary motion in double stars: the influence of the secondary. Dynamics of Populations of Planetary Systems, Proceedings of IAU Coll. 197, eds Knezevic, Z. & Milani, A., p. 71. Cambridge University Press, Cambridge.Google Scholar
Pilat-Lohinger, E. & Funk, B. (2006). The Stability of Exoplanets in the Binary Gliese 86 AB. Proceedings of the 4th Austro-Hungarian Workshop, Budapest 2005, p. 103. Department of Astronomy of the Eötvös University, ISBN 963 463 557 5.Google Scholar
Pilat-Lohinger, E. & Dvorak, R. (2007). Planets in Double Stars. Extrasolar Planets. Formation, Detection and Dynamics, ed. Dvorak, R., p. 179. Wiley-VCH, Weinheim.CrossRefGoogle Scholar
Pilat-Lohinger, E., Süli, Á., Robutel, P. & Freistetter, F. (2008a). The Influence of Giant Planets Near a Mean Motion Resonance on Earth-like Planets in the Habitable Zone of Sun-like Stars. Astrophys. J. 681, 1639.CrossRefGoogle Scholar
Pilat-Lohinger, E., Robutel, P., Süli, Á. & Freistetter, R. (2008b). On the stability of Earth-like planets in multi-planet systems. Celestial Mech. Dyn. Astron. 102, 83.CrossRefGoogle Scholar
Pilat-Lohinger, E., Eggl, S. & Winkler, T. (2009). “ExoStab” – A www-Tool to verify the Dynamical Stability of Extra-solar Planets. Mon. Not. Roy. Astron. Soc. Submitted.Google Scholar
Pilat-Lohinger, E. & Funk, B. (2009). Dynamical Stability of Extra-solar Planets. LNP, eds Souchay, J. & Dvorak, R., in press.Google Scholar
Queloz, D., Mayor, M., Weber, L., Blicha, A., Burnet, M., Confino, B., Naef, D., Pepe, F., Santos, N. & Udry, S. (2000). The CORALIE survey for southern extra-solar planets. I. A planet orbiting the star Gliese 86. Astron. Astrophys. 354, 99.Google Scholar
Rabl, G. & Dvorak, R. (1988). Satellite-type planetary orbits in double stars - A numerical approach. Astron. Astrophys. 191, 385.Google Scholar
Raymond, S.N., Mandell, A.M. & Sigurdsson, S. (2006). Exotic Earths: Forming Habitable Worlds with Giant Planet Migration. Science 313, 1413.CrossRefGoogle ScholarPubMed
Sándor, Z., Érdi, B., Széll, A. & Funk, B. (2004). The Relative Lyapunov Indicator: An Efficient Method of Chaos Detection. Celestial Mech. Dyn. Astron. 90, 127.CrossRefGoogle Scholar
Sándor, Z., Süli., A., Érdi, E., Pilat-Lohinger, E. & Dvorak, R. (2007). A stability catalogue of the habitable zones in extrasolar planetary systems. Mon. Not. Roy. Astron. Soc. 375, 1495.CrossRefGoogle Scholar
Schwarz, R., Dvorak, R., Süli, Á. & Érdi, B. (2007). Survey of the stability region of hypothetical habitable Trojan planets. Astron. Astrophys. 474, 1023.CrossRefGoogle Scholar
Zucker, S., Mazeh, T., Santos, N.C., Udry, S. & Mayor, M. (2004). Multi-order TODCOR: Application to observations taken with the CORALIE echelle spectrograph. II. A planet in the system HD 41004. Astron. Astrophys. 426, 695.CrossRefGoogle Scholar