Hostname: page-component-848d4c4894-sjtt6 Total loading time: 0 Render date: 2024-06-15T13:54:18.130Z Has data issue: false hasContentIssue false

A 160-GHz low-noise downconversion receiver front-end in a SiGe HBT technology

Published online by Cambridge University Press:  15 March 2011

Erik Öjefors*
Affiliation:
University of Wuppertal, Rainer-Gruenter-Strasse 21, D-42119 Wuppertal, Germany. Phone: +49 202 439 1453.
Franck Pourchon
Affiliation:
STMicroelectronics, 850 rue Jean Monnet, F-38926 Crolles, France.
Pascal Chevalier
Affiliation:
STMicroelectronics, 850 rue Jean Monnet, F-38926 Crolles, France.
Ullrich R. Pfeiffer
Affiliation:
University of Wuppertal, Rainer-Gruenter-Strasse 21, D-42119 Wuppertal, Germany. Phone: +49 202 439 1453.
*
Corresponding author: E. Öjefors Email: oejefors@uni-wuppertal.de

Abstract

A 160-GHz SiGe-HBT (Heterojunction Bipolar Transistor) down-conversion receiver front-end for use in active millimeter-wave imaging arrays and D-band communication applications is presented. The monolithic front-end consists of a three-stage low-noise amplifier providing 24 dB of gain and a Gilbert-cell mixer capable of operating from a −8-dBm LO signal. A fully differential architecture compatible with balanced on or off-chip antennas is used to avoid the need for on-chip baluns in antenna-integrated applications. The implemented downconversion front-end consumes 50 mA from a 3.3 V supply and requires a 0.1 mm2 die area (excl. pads) per channel. With a 160-GHz input signal and an Intermediate Frequency (IF) of 1 GHz, the implemented front-end yields a 25-dB conversion gain, a −30-dBm input compression point, and a 9-dB/7-dB (with/without auxiliary on-chip input balun) system noise figure.

Type
Research Papers
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Siegel, P.H.: Terahertz technology. IEEE Trans. Microw. Theory Tech., 50(3) (2002), 910928. doi: 10.1109/22.989974CrossRefGoogle Scholar
[2]Kukutsu, N. et al. : 10-Gbit/s wireless link using 120-GHz-band MMIC technologies, in 33rd Int. Conf. on Infrared, Millimeter and Terahertz Waves (IRMMW-THz), Pasadena, CA, 2008. doi: 10.1109/ICIMW.2008.4665692CrossRefGoogle Scholar
[3]Deal, W.R.; Yujiri, L.; Siddiqui, M.; Lai, R.: Advanced MMIC for passive millimeter and submillimeter wave imaging, in IEEE Int. Solid-State Circuits Conf., San Francisco, CA, 2007. doi: 10.1109/ISSCC.2007.373549CrossRefGoogle Scholar
[4]Tessmann, A.; Kallfass, I.; Leuther, A.; Massler, H.; Schlechtweg, M.; Ambacher, O.: Metamorphic MMICs for operation beyond 200 GHz, in Proc. 3rd European Microwave Integrated Circuits Conf., Amsterdam, The Neatherlands, 2008. doi: 10.1109/EMICC.2008.4772266CrossRefGoogle Scholar
[5]Chantre, A. et al. : Pushing conventional SiGe HBT technology towards “Dotfive” terahertz, in Proc. 5th European Microwave Integrated Circuits Conf. (EuMIC), Paris, France, 2010.Google Scholar
[6]Babakhani, A.; Guan, X.; Komijani, A.; Natarajan, A.; Hajimiri, A.: A 77-GHz phased array transceiver with on-chip antennas in silicon: receiver and antennas. IEEE J. Solid-State Circuits, 41(12) (2006), 27952806. doi: 10.1109/JSSC.2006.884811CrossRefGoogle Scholar
[7]Reynolds, S.K. et al. : A 16-element phased-array receiver IC for 60-GHz communications in SiGe BiCMOS, in IEEE Radio Frequency Integrated Circuits Symp. (RFIC), Anaheim, CA, 2010. doi: 10.1109/RFIC.2010.5477306CrossRefGoogle Scholar
[8]Öjefors, E.; Pfeiffer, U.: A 94-GHz monolithic front-end for imaging arrays in SiGe:C technology, in European Microwave Integrated Circuits Conf. (EuMIC), Amsterdam, The Neatherlands, 2008. doi: 10.1109/EUMC.2008.4751739CrossRefGoogle Scholar
[9]May, J.W.; Rebeiz, G.M.: High-performance W-band SiGe RFICs for passive millimeter-wave imaging, in IEEE Radio Frequency Integrated Circuits Symp. (RFIC), Boston, MA, 2009. doi: 10.1109/RFIC.2009.5135575CrossRefGoogle Scholar
[10]Laskin, E.; Chevalier, P.; Sautreuil, B.; Voinigescu, S.P.: A 140-GHz double-sideband transceiver with amplitude and frequency modulation operating over a few meters, in IEEE BCTM, Capri, Italy, 2009. doi: 10.1109/BIPOL.2009.5314245Google Scholar
[11]Pfeiffer, U.R.; Öjefors, E.; Zhao, Y.: A SiGe quadrature transmitter and receiver chipset for emerging high-frequency applications at 160GHz, in IEEE Int. Solid-State Circuits Conf., San Francisco, CA, 2010. doi: 10.1109/ISSCC.2010.5433832CrossRefGoogle Scholar
[12]Öjefors, E.; Pourchon, F.; Chevalier, P.; Pfeiffer, U.: A 160-GHz low-noise downconverter in a SiGe HBT technology, in European Microwave Conf. (EuMC), Paris, France, 2010.CrossRefGoogle Scholar
[13]Chevalier, P. et al. : A conventional double-polysilicon FSA-SEG Si/SiGe:C HBT reaching 400 GHz f MAX, in IEEE BCTM, Capri, Italy, 2009. doi: 10.1109/BIPOL.2009.5314250CrossRefGoogle Scholar
[14]Schroter, M.: A geometry scalable physics-based compact bipolar transistor model. IEICE Trans. Electroni. (Special Issue on Analog Circuit Device Technol.), E88-C(6) (2005), 10981113.CrossRefGoogle Scholar
[15]Voinigescu, S.P. et al. : A scalable high-frequency noise model for bipolar transistors with application to optimal transistor sizing for low-noise amplifier design. IEEE J. Solid State Circuits, 32(9) (1997), 14301439. doi: 10.1109/4.628757CrossRefGoogle Scholar