Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-05-23T15:49:42.477Z Has data issue: false hasContentIssue false

Characterization of frequency-selective surface spatial filters in a rectangular waveguide

Published online by Cambridge University Press:  05 January 2012

Fabien Debarros
Affiliation:
LCIS, Grenoble INP – Esisar, 50 rue Barthélémy de Laffemas, BP 54, 26902 Valence, France Centre Technique du Papier, Domaine Universitaire, BP 251, 38044 Grenoble Cedex 9, France
Pierre Lemaître-Auger*
Affiliation:
LCIS, Grenoble INP – Esisar, 50 rue Barthélémy de Laffemas, BP 54, 26902 Valence, France
Alysson Vasconcelos Gomes de Menezes
Affiliation:
LCIS, Grenoble INP – Esisar, 50 rue Barthélémy de Laffemas, BP 54, 26902 Valence, France LEMA, 882 Av. Aprígio Veloso, Bloco CJ, Bodocongó, CEP 58.109-970, Campina Grande, PB, Brazil
Romain Siragusa
Affiliation:
LCIS, Grenoble INP – Esisar, 50 rue Barthélémy de Laffemas, BP 54, 26902 Valence, France
Tan-Phu Vuong
Affiliation:
IMEP-LHAC, Grenoble INP – Phelma, Minatec, 3, Parvis Louis Néel – BP 257, 38016 Grenoble, France
Guy Eymin Petot Tourtollet
Affiliation:
Centre Technique du Papier, Domaine Universitaire, BP 251, 38044 Grenoble Cedex 9, France
Glauco Fontgalland
Affiliation:
LEMA, 882 Av. Aprígio Veloso, Bloco CJ, Bodocongó, CEP 58.109-970, Campina Grande, PB, Brazil
*
Corresponding author: P. Lemaître-Auger Email: pierre.lemaitre-auger@esisar.grenoble-inp.fr

Abstract

The possibility to characterize infinite and periodic frequency-selective surfaces (FSS) filters that have two orthogonal axes of symmetry inside a waveguide is reported. Thus, preliminary measurements can rapidly be obtained at low cost with few elementary cells instead of using a large FSS panel in free space. This is possible because of the equivalence that exists between the electromagnetic fields of two symmetric and oblique plane waves incident on and reflected from an infinite periodic surface and the incident/reflected fields that exist inside a single-mode rectangular waveguide containing a finite number of elementary cells. Comparisons of the measurements with some full-wave simulations for FSS belonging to the first three groups as they were defined by Munk confirm the good agreement between them. This is an interesting and simple assessment tool concerning the fabrication quality of FSS. The extension of this technique to non-symmetric FSS patterns is also discussed and supported by experimental and simulation results. The limitations of the technique are finally discussed.

Type
Research Papers
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Munk, B.A.: Frequency Selective Surfaces: Theory and Design, Wiley-Interscience, New York, 2000.CrossRefGoogle Scholar
[2]Kiani, G.I.; Weily, A.R.; Esselle, K.P.: A novel absorb/transmit FSS for secure indoor wireless networks with reduced multipath fading. IEEE Microw. Wirel. Compon. Lett., 16 (2006), 378380.CrossRefGoogle Scholar
[3]Lee, D.C.K.; Sowerby, K.W.; Neve, M.J.: Shielding strategies for interference mitigation in indoor wireless communications with frequency selective surfaces, in 2005 IEEE Antennas and Propagation Society Int. Symp., 3–8 July 2005, Piscataway, NJ, USA, 2005.Google Scholar
[4]Sung, G.H.H.; Sowerby, K.W.; Neve, M.J.; Williamson, A.G.: A frequency-selective wall for interference reduction in wireless indoor environments. IEEE Antennas Propag. Mag., 48 (2006), 2937.CrossRefGoogle Scholar
[5]Sung, G.H.H.; Sowerby, K.W.; Williamson, A.G.: Modeling a low-cost frequency selective wall for wireless-friendly indoor environments. IEEE Antennas Wirel. Propag. Lett., 5 (2006), 311314.CrossRefGoogle Scholar
[6]Hook, M.; Ward, K.D.; Mias, C.: Project to demonstrate the ability of frequency selective surface structures to enhanced the spectral efficiency of radio systems when used within buildings. OFCOM, ref AY4462A, 2004.Google Scholar
[7]Kiermeier, W.; Biebl, E.: New dual-band frequency selective surfaces for GSM frequency shielding, in EuMC 2007. 37th European Microwave Conf., 9–12 October 2007, Piscataway, NJ, USA, 2007.Google Scholar
[8]Stefanelli, R.; Trinchero, D.: Scattering analysis of frequency selective shields for electromagnetic indoor isolation. Microw. Opt. Technol. Lett., 51 (2009), 27582762.CrossRefGoogle Scholar
[9]The.INTERPHONE.Study.Group.: Brain tumour risk in relation to mobile telephone use: results of the INTERPHONE international case – control study. Int. J. Epidemiol., 39 (2010), 675694.CrossRefGoogle Scholar
[10]Arbaugh, W.A.; Shankar, N.; Wan, Y.C.J.; Kan, Z.: Your 80211 wireless network has no clothes. IEEE Wirel. Commun., 9 (2002), 4451.Google Scholar
[11]Eckhardt, D.; Steenkiste, P.: Measurement and analysis of the error characteristics of an in-building wireless network. Comput. Commun. Rev., 26 (1996), 243254.CrossRefGoogle Scholar
[12]DeBarros, F.; Eymin Petot Tourtellet, G.; Piette, P.; Lemaitre-Auger, P.; Vuong, T.-P.: MetaPaper: cellulose wallpaper for WiFi and GSM electromagnetic waves filtering, in Proc. of the Large-area Organic & Printed Electronics Convention (LOPE-C), 28–30 June, Frankfurt, Germany, 2011.Google Scholar
[13]Sung, H.-H.: Frequency selective wallpaper for mitigating indoor wireless interference. Ph.D. Thesis, University of Auckland, 2006.Google Scholar
[14]Parker, E.A.; Robertson, J.B.; Sanz-Izquierdo, B.; Batchelor, J.C.: Minimal size FSS for long wavelength operation. Electron. Lett., 44 (2008), 394395.CrossRefGoogle Scholar
[15]Amjadi, S.M.; Soleimani, M.: Narrow band-pass waveguide filter using frequency selective surfaces loaded with surface mount capacitors, in ICEAA 2007. Int. Conf. on Electromagnetics in Advanced Applications, 2007.CrossRefGoogle Scholar
[16]Cai, S.-F.; Wang, Q.-Y.; Wang, Z.-Y.; Zhai, Y.-F.: Design of a FSS waveguide filter at 8.05 GHz, in 2008 IEEE MTT-S Int. Microwave Workshop Series (IMWS) on Art of Miniaturizing RF and Microwave Passive Components, 14–15 December 2008, Piscataway, NJ, USA, 2008.CrossRefGoogle Scholar
[17]Michielssen, E.; Sajer, J.M.; Mittra, R.: Design of multilayered FSS and waveguide filters using genetic algorithms, in Proc. of IEEE Antennas and Propagation Society Int. Symp., 28 June–2 July 1993, New York, NY, USA, 1993.Google Scholar
[18]Ohira, M.; Deguchi, H.; Tsuji, M.; Shigesawa, H.: A new dual-behavior FSS resonator for waveguide filter with multiple attenuation poles, in 2005 European Microwave Conf., 4–6 October 2005, UK, 2006.Google Scholar
[19]Cucini, A.; Caiazzo, M.; Bennati, P.; Maci, S.: Quasi-TEM waveguides realized by FSS-walls, in IEEE Antennas and Propagation Society Symp., 20–25 June 2004, Piscataway, NJ, USA, 2004.CrossRefGoogle Scholar
[20]Hannan, P.; Balfour, M.: Simulation of a phased-array antenna in waveguide. IEEE Trans. Antennas Propag., 13 (1965), 342353.CrossRefGoogle Scholar
[21]Hannan, P.; Meier, P.; Balfour, M.: Simulation of phased array antenna impedance in waveguide. IEEE Trans. Antennas Propag., 11 (1963), 715716.CrossRefGoogle Scholar
[22]Balfour, M.: Phased array simulators in waveguide for a triangular arrangement of elements. IEEE Trans. Antennas Propag., 13 (1965), 475476.Google Scholar
[23]Bielli, P.; Contu, S.; Savini, D.; Saitto, A.; Tascone, R.: Design and measurement of frequency selective surfaces, in 13th European Microwave Conf., 1983.Google Scholar
[24]Pearson, R.A.; Phillips, B.; Mitchell, K.G.; Patel, M.: Application of waveguide simulators to FSS and wideband radome design, in IEE Colloquium on Advances in Electromagnetic Screens, Radomes and Materials (Digest No.: 1996/270), 1996.Google Scholar
[25]Mias, C.: Waveguide and free-space demonstration of tunable frequency selective surface. Electron. Lett., 39 (2003), 850852.CrossRefGoogle Scholar
[26]Chu, L.J.; Barrow, W.L.: Electromagnetic waves in hollow metal tubes of rectangular cross section. Proc. Inst. Radio Eng., 26 (1938), 15201555.Google Scholar
[27]Pelton, E.L.; Munk, B.A.: Periodic antenna surface of tripoles slots elements. US3975738, 1976.Google Scholar