Hostname: page-component-848d4c4894-ttngx Total loading time: 0 Render date: 2024-06-09T12:33:13.440Z Has data issue: false hasContentIssue false

Slotted vertical wall for decoupling and beam tilt correction

Published online by Cambridge University Press:  29 June 2023

Yiying Wang
Affiliation:
Guangxi Key Lab of Wireless Wideband Communication and Signal Processing, Guilin University of Electronic Technology, Guilin, Guangxi, China
Shengfei Zhang
Affiliation:
Guangxi Key Lab of Wireless Wideband Communication and Signal Processing, Guilin University of Electronic Technology, Guilin, Guangxi, China
Bo Wang
Affiliation:
Xi’an Electronic Engineering Research Institute, Xi’an, Shanxi, China
Hongxin Zhang
Affiliation:
Beijing University of Posts and Telecommunications, Beijing, China
Yannan Jiang
Affiliation:
Guangxi Key Lab of Wireless Wideband Communication and Signal Processing, Guilin University of Electronic Technology, Guilin, Guangxi, China
Wanghua Pan*
Affiliation:
Guangxi Key Lab of Wireless Wideband Communication and Signal Processing, Guilin University of Electronic Technology, Guilin, Guangxi, China
Ahmed A. Kishk
Affiliation:
Department of Electrical and Computer Engineering, Concordia University, Montreal, QC, Canada
*
Corresponding author: Wanghua Pan; Email: pwh2008_79@163.com

Abstract

An intra-band pattern-corrected decoupling vertical conducting wall is realized by dielectric substrate with conductor cladding on both side wall between two tightly spaced H-plane microstrip patches with λ0/20 edge-to-edge spacing. The wall is grounded and two symmetrical slots are etched on the vertical substrate. The measured results agree with the simulations, showing that the slotted vertical wall reduces the mutual coupling within the bandwidth to −30 dB and corrects the radiation beam tilt to be within −4.5° to 3° from the broadside direction. A gain reduction of 0.6 dB is observed compared to the gain without the slotted decoupling wall.

Type
Research Paper
Copyright
© The Author(s), 2023. Published by Cambridge University Press in association with the European Microwave Association

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Zhang, YM, Ye, QC, Frølund Pedersen, G and Zhang, S (2021) A simple decoupling network with filtering response for patch antenna arrays. IEEE Transactions on Antennas and Propagation 69(11), 74277439.CrossRefGoogle Scholar
Chung, KL and Kharkovsky, S (2013) Mutual coupling reduction and gain enhancement using angular offset elements in circularly polarized patch array. IEEE Antennas and Wireless Propagation Letters 12, 11221124.CrossRefGoogle Scholar
Liu, NW, Zhu, L, Liu, ZX, Li, M, Fu, G and Liu, Y (2022) A novel low-profile circularly polarized diversity patch antenna with extremely small spacing, reduced size, and low mutual coupling. IEEE Transactions on Antennas and Propagation 70(1), 135144.Google Scholar
Li, M, Zhong, BG and Cheung, SW (2019) Isolation enhancement for MIMO patch antennas using near-field resonators as coupling-mode transducers. IEEE Transactions on Antennas and Propagation 67(2), 755764.Google Scholar
Niu, Z, Zhang, H, Chen, Q and Zhong, T (2019) Isolation enhancement in closely coupled dual-band MIMO patch antennas. IEEE Antennas and Wireless Propagation Letters 18(8), 16861690.Google Scholar
Li, M, Jiang, L and Yeung, KL (2021) Isolation enhancement for MIMO patch antennas sharing a common thick substrate: using a dielectric block to control space-wave coupling to cancel surface-wave coupling. IEEE Transactions on Antennas and Propagation 69(4), 18531863.CrossRefGoogle Scholar
Alsath, MGN, Kanagasabai, M and Balasubramanian, B (2013) Implementation of slotted meander-line resonators for isolation enhancement in microstrip patch antenna arrays. IEEE Antennas and Wireless Propagation Letters 12, 1518.CrossRefGoogle Scholar
Yang, X, Liu, Y, Xu, YX and Gong, SX (2017) Isolation enhancement in patch antenna array with fractal UC-EBG structure and cross slot. IEEE Antennas and Wireless Propagation Letters 16, 21752178.CrossRefGoogle Scholar
Lin, H, Chen, Q, Ji, Y, Yang, X, Wang, J and Ge, L (2020) Weak-field-based self-decoupling patch antennas. IEEE Transactions on Antennas and Propagation 68(6), 42084217.CrossRefGoogle Scholar
Lai, QX, Pan, YM, Zheng, SY and Yang, WJ (2021) Mutual coupling reduction in MIMO microstrip patch array using TM10 and TM02 modes. IEEE Transactions on Antennas and Propagation 69(11), 75627571.CrossRefGoogle Scholar
Yang, F, Peng, L, Liao, X, Mo, K, Jiang, X and Li, S (2019) Coupling reduction for a wideband circularly polarized conformal array antenna with a single-negative structure. IEEE Antennas and Wireless Propagation Letters 18(5), 991995.CrossRefGoogle Scholar
Bait-Suwailam, MM, Siddiqui, OF and Ramahi, OM (2010) Mutual coupling reduction between microstrip patch antennas using slotted-complementary split-ring resonators. IEEE Antennas and Wireless Propagation Letters 9, 876878.Google Scholar
Wei, K, Li, J, Wang, L, Xing, Z and Xu, R (2016) S-shaped periodic defected ground structures to reduce microstrip antenna array mutual coupling. Electronics Letters 52(15), 12881290.CrossRefGoogle Scholar
Jiao, T, Jiang, T and Li, Y (2017) A low mutual coupling MIMO antenna using 3-D electromagnetic isolation wall structures. In IEEE Asia-Pacific Conference on Antennas and Propagation (APCAP), 12.Google Scholar
Yang, XM, Liu, XG, Zhou, XY and Cui, TJ (2012) Reduction of mutual coupling between closely packed patch antennas using waveguided metamaterials. IEEE Antennas and Wireless Propagation Letters 11, 389391.Google Scholar
Sun, XB and Cao, MY (2017) Low mutual coupling antenna array for WLAN application. Electronics Letters 53(6), 368370.CrossRefGoogle Scholar
Dadashzadeh, G, Dadgarpour, A, Jolani, F and Virdee, BS (2011) Mutual coupling suppression in closely spaced antennas. IET Microwaves, Antennas & Propagation 5(1), 113125.Google Scholar
Hwangbo, S, Yang, HY and Yoon, YK (2017) Mutual coupling reduction using micromachined complementary meander-line slots for a patch array antenna. IEEE Antennas and Wireless Propagation Letters 16, 16671670.CrossRefGoogle Scholar
Lu, C, Zhang, Q, Qi, H, Li, S, Zhao, H and Yin, X (2019) Compact postwall slotline-based stepped impedance resonator decoupling structure for isolation enhancement of patch antenna array. IEEE Antennas and Wireless Propagation Letters 18(12), 26472651.CrossRefGoogle Scholar
Gao, D, Cao, ZX, Fu, SD, Quan, X and Chen, P (2020) A novel slot-array defected ground structure for decoupling microstrip antenna array. IEEE Transactions on Antennas and Propagation 68(10), 70277038.CrossRefGoogle Scholar
Habashi, A, Nourinia, J and Ghobadi, C (2011) Mutual coupling reduction between very closely spaced patch antennas using low-profile folded split-ring resonators (FSRRs). IEEE Antennas and Wireless Propagation Letters 10, 862865.Google Scholar
OuYang, J, Yang, F and Wang, ZM (2011) Reducing mutual coupling of closely spaced microstrip MIMO antennas for WLAN application. IEEE Antennas and Wireless Propagation Letters 10, 310313.CrossRefGoogle Scholar
Qi, H, Liu, L, Yin, X, Zhao, H and Kulesza, WJ (2016) Mutual coupling suppression between two closely spaced microstrip antennas with an asymmetrical coplanar strip wall. IEEE Antennas and Wireless Propagation Letters 15, 191194.CrossRefGoogle Scholar
Wang, Y, Zhang, S, Yan, Y, Yu, X and Kishk, AA (2021) Vertical-wall between tightly spaced patch antennas for decoupling and radiation pattern correction. In IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (APS/URSI), 11491150.CrossRefGoogle Scholar
Wang, Y, Zhang, S, Wang, B, Lan, D, Yu, X, Mo, J and Kishk, AA (2022) T-type vertical wall for decoupling and pattern correction of patch antenna. Applied Sciences 12(21), .Google Scholar