Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-06-03T13:55:10.346Z Has data issue: false hasContentIssue false

Identification of major insect pests of Amaranthus spp. and germplasm screening for insect resistance in Tanzania

Published online by Cambridge University Press:  03 August 2018

Jason D. Smith
Affiliation:
Department of Biology, Dickinson College, Carlisle, PA 17013, USA World Vegetable Center, Eastern and Southern Africa, PO Box 10 Duluti, Arusha, Tanzania
Fekadu F. Dinssa
Affiliation:
World Vegetable Center, Eastern and Southern Africa, PO Box 10 Duluti, Arusha, Tanzania
Robert S. Anderson
Affiliation:
Research and Collections, Canadian Museum of Nature, Ottawa, Ontario, K1P 6P4, Canada
Fu-cheng Su
Affiliation:
World Vegetable Center, 60 Yi Ming Liao, Shanhua, Tainan, 74151, Taiwan
Ramasamy Srinivasan*
Affiliation:
World Vegetable Center, 60 Yi Ming Liao, Shanhua, Tainan, 74151, Taiwan
Get access

Abstract

Vegetable and grain amaranths represent a vital source of micronutrients and protein in Asia and Africa. However, various foliar lepidopteran pests and stem-mining weevils hinder amaranth production. Insect-resistant cultivars can enhance the productivity of this crop. Here, we report on the performances of amaranth varieties screened for their resistance to insect pests under the field conditions at The World Vegetable Center stations in Asia and sub-Saharan Africa. We conducted two preliminary screening trials with a total of 263 entries from around the world in Taiwan and a third preliminary screening trial with 49 African-indigenous entries in Tanzania. Promising entries from these preliminary trials were collectively evaluated in an advanced screening trial in Tanzania, to identify lines resistant to foliar and stem-boring pests in East Africa. Four entries exhibited moderate resistance to foliar pests: TZ51 and TZ53 (Amaranthus cruentus), TZ34 (A. dubius) and TZ39 (Amaranthus sp.). Five entries showed moderate resistance to stem weevils: TZ06 and TZ27 (A. cruentus), TZ52 (A. graecizans), TZ59 (A. palmeri) and TZ07 (Amaranthus sp.). Lepidopteran pests affecting leaves were reared to adulthood and identified as Spoladea recurvalis (Crambidae), Spodoptera exigua (Noctuidae) and Spodoptera littoralis (Noctuidae). Stem weevil larvae were also reared and identified as: Neocleonus sannio Herbst, Gasteroclisus pr. rhomboidalis Boheman, Hypolixus pr. haerens Boheman and Baradine sp. (Curculionidae). These results highlight key amaranth pests in East Africa and identify insect-resistant entries that will be useful in breeding programmes and resistance studies.

Type
Research Paper
Copyright
Copyright © icipe 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abang, A. F., Srinivasan, R., Kekeunou, S., Hanna, R., Chagomoka, T., Chang, J. C. and Bilong Bilong, C. F. (2014) Identification of okra (Abelmoschus spp.) accessions resistant to aphid (Aphis gossypii Glover) in Cameroon. African Entomology 22, 273284. doi:10.4001/003.022.0201.Google Scholar
Achigan-Dako, E. G., Sogbohossou, O. E. D. and Maundu, P. (2014) Current knowledge on Amaranthus spp.: Research avenues for improved nutritional value and yield in leafy amaranths in sub-Saharan Africa. Euphytica 197, 303317. doi:10.1007/s10681-014-1081-9.Google Scholar
Aderolu, I. A., Omooloye, A. A., and Okelana, F. A. (2013) Occurrence, abundance and control of the major insect pests associated with amaranths in Ibadan, Nigeria. Entomology, Ornithology & Herpetology: Current Research 2, 112. doi:10.4172/2161-0983.1000112Google Scholar
AVRDC (Asian Vegetable Research and Development Center) (1979) Progress Report for 1978. Asian Vegetable Research and Development Center, Shanhua, Taiwan, Republic of China. 173 pp.Google Scholar
Blodgett, J. T., Swart, W. J. and Louw, S. v. d. M. (1998) First report of Fusarium sambucinum, F. oxysporum, and F. subglutinans associated with stem decay of Amaranthus hybridus in South Africa. Plant Disease 82, 1062. doi:10.1094/PDIS.1998.82.9.1062B.Google Scholar
Blodgett, J. T., Swart, W. J. and Louw, S. v. d. M. (2004) Identification of fungi and fungal pathogens associated with Hypolixus haerens and decayed and cankered stems of Amaranthus hybridus. Plant Disease 88, 333337. doi:10.1094/PDIS.2004.88.4.333.Google Scholar
Brown, E. S. and Dewhurst, C. F. (1975) The genus Spodoptera (Lepidoptera, Noctuidae) in Africa and the Near East. Bulletin of Entomological Research 65, 221262. doi:10.1017/S0007485300005939.Google Scholar
de Mendiburu, F. (2014) Agricolae: Statistical procedures for agricultural research. CRAN.R-project.org. Available at: http://CRAN.R-project.org/package=agricolae [Accessed February 9, 2016].Google Scholar
Ebert, A. W. (2014) Potential of underutilized traditional vegetables and legume crops to contribute to food and nutritional security, income and more sustainable production systems. Sustainability 6, 319335. doi:10.3390/su6010319.Google Scholar
Eluwa, M. C. (1977) Studies on Gasteroclisus rhomboidalis (Boheman) (Coleoptera: Curculionidae)—a pest of the African “spinach”. Journal of Natural History 11, 417424. doi:10.1080/00222937700770331.Google Scholar
Fan, S., Zhang, F., Deng, K., Yu, C., Liu, S., Zhao, P. and Pan, C. (2013) Spinach or amaranth contains highest residue of metalaxyl, fluazifop-P-butyl, chlorpyrifos, and lambda-cyhalothrin on six leaf vegetables upon open field application. Journal of Agricultural and Food Chemistry 61, 20392044.Google Scholar
Gathu, R. K. (2014) Invasion of amaranth and spinach by spotted beet webworm Spoladea recurvalis in semi-arid areas of Kenya. Conference Proceedings of the Horticultural Association of Kenya, Nairobi, Kenya.Google Scholar
Greenberg, S. M., Sappington, T. W., Legaspi, B. C. Jr., Liu, T.-X. and Sétamou, M. (2001) Feeding and life history of Spodoptera exigua (Lepidoptera: Noctuidae) on different host plants. Annals of the Entomological Society of America 94, 566575.Google Scholar
Hsu, Y.-C. and Srinivasan, R. (2012) Desert horse purslane weed as an alternative host for amaranth leaf webber, Hymenia recurvalis in Taiwan. Formosan Entomologist 32, 297302.Google Scholar
Kagali, R. N. (2014) An Integrated Pest Management Approach of Amaranth Insect Pests in Buuri District, Meru County, Kenya. MSc Thesis, Jomo Kenyatta University of Agriculture and Technology, Kenya. 60 pp.Google Scholar
Kagali, R. N., Kioko, E. N., Osiemo, Z., Muya, S. and Wachera, C. (2013) Insect abundance and diversity on cultivated Amaranthus spp. (Amaranthacea) in Meru County, Kenya. American International Journal of Contemporary Research 3, 110116.Google Scholar
Louw, S. v. d. M., Swart, W. J., Honiball, S. J. and Chen, W. (2002) Weevil–fungus interaction on Amaranthus hybridus (Amaranthaceae) in South Africa. African Entomology 10, 361364.Google Scholar
Louw, S. v. d. M., Van Eeden, C. F. and Weeks, W. J. (1995) Curculionidae (Coleoptera) associated with wild and cultivated Amaranthus spp. (Amaranthaceae) in South Africa. African Crop Science Journal 3, 9398.Google Scholar
Mureithi, D. M., Mworia, J. K., Meyhoefer, R., Murungi, L. K., Losenge, T., Akutse, K. S., Ekesi, S. and Fiaboe, K. K. M. (2015) Survey for pest and natural enemies of amaranth and African nightshades in Kenya and Tanzania, p. 185. In Book of Abstracts Tropentag 2015: International Research on Food Security, Natural Resource Management and Rural Development ‘Management of land use systems for enhanced food security: conflicts, controversies and resolutions’ (edited by Tielkes, E.), Cuvillier Verlag, Berlin, Germany. Available at: http://www.tropentag.de/2015/proceedings/proceedings.pdf.Google Scholar
Ogedegbe, A. B. O. and Ezeh, A. E. (2015) Effect of variety and nutrient on insect pest infestation of Amaranthus spp. Journal of Applied Sciences and Environmental Management 19, 251256.Google Scholar
R Core Team (2014) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Vienna, Austria. URL http://www.R-project.org/.Google Scholar
Schoonhoven, L. M., van Loon, J. J. A. and Dicke, M. (2006) Insect–Plant Biology. 2nd edn. Oxford University Press, New York, USA. 440 pp.Google Scholar
Shaner, G. and Finney, R. E. (1977) The effect of nitrogen fertilization on the expression of slow-mildewing resistance in Knox wheat. Phytopathology 67, 10511056.Google Scholar
Showler, A. T. (2001) Spodoptera exigua oviposition and larval feeding preferences for pigweed, Amaranthus hybridus, over squaring cotton, Gossypium hirsutum, and a comparison of free amino acids in each host plant. Journal of Chemical Ecology 27, 20132028. doi:10.1023/A:1012238803311.Google Scholar