Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-05-27T15:01:57.597Z Has data issue: false hasContentIssue false
Accepted manuscript

Excising the ghosts of invasions past: restoring native vegetation to soil infested with invasive swallow-worts

Published online by Cambridge University Press:  08 May 2024

Emmett H. U. Snyder
Affiliation:
Master’s Student, Mass Timber Institute, University of Toronto, Toronto, ON, Canada
Ian M. Jones*
Affiliation:
Postdoctoral Research Fellow, University of Toronto, Institute of Forestry and Conservation, Toronto, ON, Canada
Melanie A. Sifton
Affiliation:
Ph.D Candidate, University of Toronto, Institute of Forestry and Conservation, Toronto, ON, Canada
Carla Timm
Affiliation:
Research Technician, University of Toronto, Institute of Forestry and Conservation, Toronto, ON, Canada
Courtney Stevens
Affiliation:
Research Technician, University of Toronto, Institute of Forestry and Conservation, Toronto, ON, Canada
Robert S. Bourchier
Affiliation:
Research Scientist, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
Sandy M. Smith
Affiliation:
Professor, University of Toronto, Institute of Forestry and Conservation, Toronto, ON, Canada
*
*Author for correspondence: Ian M. Jones, University of Toronto, Institute of Forestry and Conservation, 33 Willcocks Street, Toronto, ON M5S 3B3, Canada. (Email: i.jones@utoronto.ca)

Abstract

Invasive plants can gain a foothold in new environments by manipulating soil conditions through allelopathy or through the disruption of associations between native plants and their mycorrhizal associates. The resulting changes in soil conditions can affect the recovery of habitats long after the invasive plant has been removed. We conducted a series of greenhouse experiments to examine the effects of soil conditioned by pale swallow-wort [Vincetoxicum rossicum (Kleopow) Barbarich; Apocynaceae], on the growth of native plants. Additionally, we tested the effects of aqueous extracts of common milkweed (Asclepias syriaca L.; Apocynaceae), a related plant with known allelopathic effects, on the regrowth of V. rossicum from transplanted root crowns. Soil from a 15-yr-old V. rossicum infestation reduced seedling emergence in A. syriaca as well as in V. rossicum itself. Conversely, the same soil had no effect on the growth of mature A. syriaca plants. Soil conditioned by V. rossicum growth in the greenhouse had no effect on the biomass and percentage cover generated by two restoration seed mixes. Soil conditioned by A. syriaca, however, yielded lower biomass and percentage cover from both seed mixes. In contrast to the allelopathic effects of A. syriaca on seedlings, aqueous extracts of A. syriaca increased aboveground plant growth in V. rossicum. Our results suggest that the effects of V. rossicum–conditioned soil on native plants are concentrated at the seedling establishment phase. Additionally, the use of diverse native seed mixes shows great potential for restoring productivity to ecosystems affected by V. rossicum.

Type
Research Article
Copyright
© Weed Science Society of America, 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)