Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-06-03T04:18:36.226Z Has data issue: false hasContentIssue false
Accepted manuscript

Use of nonnative, invasive tree logs for commercial mushroom production

Published online by Cambridge University Press:  20 May 2024

Kristen E. Bowers*
Affiliation:
Biological Science Technician, USDA-ARS Center for Medical, Agricultural, and Veterinary Entomology, Tallahassee, FL, USA Current: Research Scientist, Department of Entomology, Plant Pathology and Weed Science, New Mexico State University, Las Cruces, NM, USA
Stephen D. Hight
Affiliation:
Research Entomologist Emeritus, USDA-ARS Center for Medical, Agricultural, and Veterinary Entomology, Tallahassee, FL, USA Current: Insects and Associates, LLC, Pittsburg, KS, USA
Neil W. Miller
Affiliation:
Biological Science Technician, USDA-ARS Center for Medical, Agricultural, and Veterinary Entomology, Tallahassee, FL, USA
Alexander M. Gaffke
Affiliation:
Research Entomologist, USDA-ARS Center for Medical, Agricultural, and Veterinary Entomology, Tallahassee, FL,USA
Jennifer E. Taylor
Affiliation:
Associate Professor, Florida A&M University, Tallahassee, FL, USA
*
Corresponding author: Kristen Bowers; Email: kristenbowers1@gmail.com

Abstract

Removal and disposal of nonnative trees is expensive and time-consuming. Using these nonnative trees as a substrate to produce edible mushrooms could diversify farming operations and provide additional income to small-scale farmers. This research compared the production of shiitake mushrooms (Lentinula edodes) on nonnative tree logs to shiitake mushroom production on native oak (Quercus L.) logs, which are the traditional substrate. In a 2-yr study, we evaluated nonnative tree species as alternate substrates for growing shiitake mushrooms at farms in northern Florida and southern Georgia. A mix of native Quercus spp. and nonnative trees was targeted for removal on participating farms. Five nonnative tree species were initially tested for their ability to produce edible mushrooms, either shiitake or oyster (Pleurotus ostreatus var. florida). Of the nonnative trees we tested: Chinaberry (Melia azedarach L.), Chinese tallowtree [Triadica sebifera (L.) Small], silktree (Albizia julibrissin Durazz.), earleaf acacia (Acacia auriculiformis A. Cunn. ex Benth.), and paperbark tree [Melaleuca quinquenervia (Cav.) S.F. Blake], only T. sebifera produced shiitake mushrooms, and none produced native Florida oyster mushrooms. In on-farm trials, Quercus spp. logs produced more total mushrooms and more mushrooms per log and had a higher total mushroom yield per log. However, mushrooms produced on T. sebifera logs had higher mean weight per mushroom. Edible mushroom fungi can be used to recycle invasive, nonnative T. sebifera and transform their biomass from waste into an income-producing resource.

Type
Research Article
Copyright
© Weed Science Society of America, 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)