Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-06-03T02:26:06.533Z Has data issue: false hasContentIssue false

Fermentation profile and dynamics of bacterial communities in vetch-oat ensiled with a novel spray-dried inoculant

Published online by Cambridge University Press:  05 February 2024

J. E. Blajman*
Affiliation:
Instituto de Investigación de la Cadena Láctea (CONICET-INTA), Ruta 34 Km. 227, CP 2300 Rafaela, Santa Fe, Argentina
M. S. Lingua
Affiliation:
Instituto de Investigación de la Cadena Láctea (CONICET-INTA), Ruta 34 Km. 227, CP 2300 Rafaela, Santa Fe, Argentina
J. M. Irazoqui
Affiliation:
Instituto de Investigación de la Cadena Láctea (CONICET-INTA), Ruta 34 Km. 227, CP 2300 Rafaela, Santa Fe, Argentina
G. M. Santiago
Affiliation:
Instituto de Investigación de la Cadena Láctea (CONICET-INTA), Ruta 34 Km. 227, CP 2300 Rafaela, Santa Fe, Argentina
M. F. Eberhardt
Affiliation:
Instituto de Investigación de la Cadena Láctea (CONICET-INTA), Ruta 34 Km. 227, CP 2300 Rafaela, Santa Fe, Argentina
A. F. Amadio
Affiliation:
Instituto de Investigación de la Cadena Láctea (CONICET-INTA), Ruta 34 Km. 227, CP 2300 Rafaela, Santa Fe, Argentina
G. H. Peralta
Affiliation:
Instituto de Lactología Industrial (CONICET-UNL), Santiago del Estero 2829, CP 3000 Santa Fe, Argentina
M. C. Gaggiotti
Affiliation:
Instituto de Investigación de la Cadena Láctea (CONICET-INTA), Ruta 34 Km. 227, CP 2300 Rafaela, Santa Fe, Argentina
*
Corresponding author: J. E. Blajman; Email: jblajman@yahoo.com.ar

Abstract

This study aimed to examine and compare the effectiveness of a novel spray-dried inoculant and a commercial freeze-dried additive on the fermentation quality, aerobic stability and bacterial population of vetch-oat silage. An entirely random design used a 3 × 4 factorial arrangement of treatments, with and without lactic acid bacteria (LAB) inoculants and four fermentation periods. Physicochemical parameters, microbiological counts and 16S rRNA gene sequencing analysis on Nanopore MinION were conducted to characterize the ensiling process. Both LAB inoculants increased dry matter, crude protein, lactic, acetic and propionic acid contents, while reducing pH, neutral detergent fibre, ammonia nitrogen/total nitrogen and ethanol concentrations compared to the control group. Overall, the native inoculant decreased the cell load of coliforms, yeasts and moulds. In addition, bio-inoculants enhanced the aerobic stability of vetch-oat intercrops. After ensiling, bacterial alpha diversity decreased noticeably; inoculation reduced the number of observed operational taxonomic units and the Shannon and Simpson indices. Notably, the relative abundance of Lactobacillus in the control group was lower than in treated silages, while the relative values of Staphylococcus increased sharply in the uninoculated group. In conclusion, the native strains showed promise for usage as a bio-inoculant in the ensiling of vetch-oat at a mixture rate of 1:1, producing an immediate impact as well as a favourable effect on the post-opening phase. This represents the first report on 16S rRNA gene-based nanopore metagenomics applied to the bacterial analysis of vetch-oat silage, providing a microbiological insight where native and commercial strains dominate the natural epiphytic community.

Type
Crops and Soils Research Paper
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ávila, CLS, Pinto, JC, Figueiredo, HCP and Schwan, RF (2009) Effects of an indigenous and a commercial Lactobacillus buchneri strain on quality of sugar cane silage. Grass and Forage Science 64, 384394.10.1111/j.1365-2494.2009.00703.xCrossRefGoogle Scholar
Baxevanos, D, Tsialtas, IT, Voulgari, O, Pankou, CI, Vlachostergios, D and Lithourgidis, AS (2020) Oat genotypic requirement for intercropping with vetch under Mediterranean conditions. The Journal of Agricultural Science 158, 695706.10.1017/S0021859621000071CrossRefGoogle Scholar
Bennett, SD, Walsh, KA and Gould, LH (2013) Foodborne disease outbreaks caused by Bacillus cereus, Clostridium perfringens, and Staphylococcus aureus-United States, 1998–2008. Clinical Infectious Diseases 57, 425433.10.1093/cid/cit244CrossRefGoogle ScholarPubMed
Blain, JM and Urtinette, MA (1954) Determinación de L'anmoniaque Method. In Interpretation des resultats. Conference Europiene des Herbages. París, pp. 317323.Google Scholar
Blajman, JE, Vinderola, G, Cuatrin, A, Lingua, MS and Páez, RB (2020 a) Technological variables influencing the growth and stability of a silage inoculant based on spray-dried lactic acid bacteria. Journal of Applied Microbiology 129, 14861496.10.1111/jam.14750CrossRefGoogle ScholarPubMed
Blajman, JE, Vinderola, G, Páez, RB and Signorini, ML (2020 b) The role of homofermentative and heterofermentative lactic acid bacteria for alfalfa silage: a meta-analysis. The Journal of Agricultural Science 158, 107118.10.1017/S0021859620000386CrossRefGoogle Scholar
Blajman, JE, Signorini, ML, Vinderola, G, Lingua, MS, Romero, LA, Páez, RB, Casas, CI, Bergamini, CV, Giménez, P and Gaggiotti, MC (2022) Impact of native spray-dried lactic acid bacteria, packing density and wilting time on fermentation characteristics of experimental maize and lucerne silages. Grass and Forage Science 77, 6678.10.1111/gfs.12562CrossRefGoogle Scholar
Borreani, G, Tabacco, E, Schmidt, RJ, Holmes, BJ and Muck, RE (2018) Silage review: factors affecting dry matter and quality losses in silages. Journal of Dairy Science 101, 39523979.10.3168/jds.2017-13837CrossRefGoogle ScholarPubMed
Burns, P, Borgo, MF, Binetti, A, Puntillo, M, Bergamini, C, Páez, R, Mazzoni, R, Reinheimer, J and Vinderola, G (2018) Isolation, characterization and performance of autochthonous spray dried lactic acid bacteria in maize micro and bucket-silos. Frontiers in Microbiology 9, 2861.10.3389/fmicb.2018.02861CrossRefGoogle ScholarPubMed
Caballero, R, Goicoechea, EL and Hernaiz, PJ (1995) Forage yields and quality of common vetch and oat sown at varying seeding ratios and seeding rates of vetch. Field Crops Research 41, 135140.10.1016/0378-4290(94)00114-RCrossRefGoogle Scholar
Cerecetto, V, Leoni, C, Jurburg, SD, Kampouris, ID, Smalla, K and Babin, D (2023) Pasture-crop rotations modulate the soil and rhizosphere microbiota and preserve soil structure supporting oat cultivation in the Pampa biome. Available at SSRN 4540878.10.2139/ssrn.4540878CrossRefGoogle Scholar
Chen, L, Guo, G, Yuan, X, Zhang, J, Li, J and Shao, T (2016) Effects of applying molasses, lactic acid bacteria and propionic acid on fermentation quality, aerobic stability and in vitro gas production of total mixed ration silage prepared with oat–common vetch intercrop on the Tibetan Plateau. Journal of the Science of Food and Agriculture 96, 16781685.10.1002/jsfa.7271CrossRefGoogle ScholarPubMed
Chen, L, Bai, S, You, M, Xiao, B, Li, P and Cai, Y (2020) Effect of a low temperature tolerant lactic acid bacteria inoculant on the fermentation quality and bacterial community of oat round bale silage. Animal Feed Science and Technology 269, 114669.10.1016/j.anifeedsci.2020.114669CrossRefGoogle Scholar
Copani, G, Niderkorn, V, Anglard, F, Quereuil, A and Ginane, C (2016) Silages containing bioactive forage legumes: a promising protein-rich feed source for growing lambs. Grass and Forage Science 71, 622631.10.1111/gfs.12225CrossRefGoogle Scholar
Cristiani, M (2015) Evaluación de la aptitud microbiológica de los inoculantes bacterianos empleados en la conservación de los silos de alfalfa (Bachelor degree thesis). Universidad Nacional de Río Cuarto, Argentina.Google Scholar
da Silva, ÉB, Liu, X, Mellinger, C, Gressley, TF, Stypinski, JD, Moyer, NA and Kung, L Jr (2022) Effect of dry matter content on the microbial community and on the effectiveness of a microbial inoculant to improve the aerobic stability of corn silage. Journal of Dairy Science 105, 50245043.10.3168/jds.2021-21515CrossRefGoogle Scholar
Drouin, P, Tremblay, J, Renaud, J and Apper, E (2021) Microbiota succession during aerobic stability of maize silage inoculated with Lentilactobacillus buchneri NCIMB 40788 and Lentilactobacillus hilgardii CNCM-I-4785. MicrobiologyOpen 10, e1153.10.1002/mbo3.1153CrossRefGoogle ScholarPubMed
Dunière, L, Sindou, J, Chaucheyras-Durand, F, Chevallier, I and Thévenot-Sergentet, D (2013) Silage processing and strategies to prevent persistence of undesirable microorganisms. Animal Feed Science and Technology 182, 115.10.1016/j.anifeedsci.2013.04.006CrossRefGoogle Scholar
Erol, A, Kaplan, MAHMUT and Kizilsimsek, M (2009) Oats (Avena sativa)-Common vetch (Vicia sativa) mixtures grown on a low-input basis for a sustainable agriculture. TG: Tropical Grasslands 43, 191.Google Scholar
Fagorzi, C, Ilie, A, Decorosi, F, Cangioli, L, Viti, C, Mengoni, A and DiCenzo, GC (2020) Symbiotic and nonsymbiotic members of the genus Ensifer (syn. Sinorhizobium) are separated into two clades based on comparative genomics and high-throughput phenotyping. Genome Biology and Evolution 12, 25212534.10.1093/gbe/evaa221CrossRefGoogle ScholarPubMed
Feng, Q, Shi, W, Chen, S, Degen, AA, Qi, Y, Yang, F and Zhou, J (2022) Addition of organic acids and Lactobacillus acidophilus to the leguminous forage Chamaecrista rotundifolia improved the quality and decreased harmful bacteria of the silage. Animals 12, 2260.10.3390/ani12172260CrossRefGoogle Scholar
Franco, M, Tapio, I, Huuskonen, A and Rinne, M (2022) Fermentation quality and bacterial ecology of red clover dominated silage modulated by different management factors. Frontiers in Animal Science 3, 1080535. doi: 10.3389/fanim.2022.1080535.CrossRefGoogle Scholar
Gallo, A, Fancello, F, Ghilardelli, F, Zara, S, Froldi, F and Spanghero, M (2021) Effects of several lactic acid bacteria inoculants on fermentation and mycotoxins in corn silage. Animal Feed Science and Technology 277, 114962.CrossRefGoogle Scholar
Gomes, ALM, Jacovaci, FA, Bolson, DC, Nussio, LG, Jobim, CC and Daniel, JLP (2019) Effects of light wilting and heterolactic inoculant on the formation of volatile organic compounds, fermentative losses and aerobic stability of oat silage. Animal Feed Science and Technology 247, 194198.10.1016/j.anifeedsci.2018.11.016CrossRefGoogle Scholar
Hanshew, AS, Mason, CJ, Raffa, KF and Currie, CR (2013) Minimization of chloroplast contamination in 16S rRNA gene pyrosequencing of insect herbivore bacterial communities. Journal of Microbiological Methods 95, 149155.10.1016/j.mimet.2013.08.007CrossRefGoogle ScholarPubMed
He, L, Zhou, W, Xing, Y, Pian, R, Chen, X and Zhang, Q (2020) Improving the quality of rice straw silage with Moringa oleifera leaves and propionic acid: fermentation, nutrition, aerobic stability and microbial communities. Bioresource Technology 299, 122579.10.1016/j.biortech.2019.122579CrossRefGoogle ScholarPubMed
Hisham, MB, Hashim, AM, Mohd Hanafi, N, Abdul Rahman, N, Abdul Mutalib, NE, Tan, CK, Nasli, M and Mohd Yusoff, NF (2022) Bacterial communities associated with silage of different forage crops in Malaysian climate analysed using 16S amplicon metagenomics. Scientific Reports 12, 117.10.1038/s41598-022-08819-4CrossRefGoogle ScholarPubMed
Jaurena, G (2009) Guía de Procedimientos Analíticos (Ph.D. thesis). Universidad de Buenos Aires, Argentina.Google Scholar
Ju, Z, Zhao, G, Qin, F and Jiao, T (2016) Effects of fermentation interval and additives on the quality of baled oat and common vetch mixture silage in an alpine area. Acta Prataculturae Sinica 25, 148157.Google Scholar
Kchaou, R, Benyoussef, S, Jebari, S, Harbaoui, K and Berndtsson, R (2022) Forage potential of cereal-legume mixtures as an adaptive climate change strategy under low input systems. Sustainability 15, 338.10.3390/su15010338CrossRefGoogle Scholar
Kumar, S, Singh, M, Meena, RK, Kumar, R, Ram, H, Kumar, S and Meena, VK (2022) Legume-cereal combination approach for quality of forage production and sustainability: a review. The Pharma Innovation Journal 11, 491501.Google Scholar
Leggett, RM and Clark, MD (2017) A world of opportunities with nanopore sequencing. Journal of Experimental Botany 68, 54195429.CrossRefGoogle ScholarPubMed
Li, Y and Nishino, N (2013) Effects of ensiling fermentation and aerobic deterioration on the bacterial community in Italian ryegrass, guinea grass, and whole-crop maize silages stored at high moisture content. Asian-Australasian Journal of Animal Sciences 26, 1304.CrossRefGoogle ScholarPubMed
Li, X, Ma, Y, Liang, S, Tian, Y, Yin, S, Xie, S and Xie, H (2018) Comparative genomics of 84 Pectobacterium genomes reveals the variations related to a pathogenic lifestyle. BMC Genomics 19, 122.CrossRefGoogle ScholarPubMed
Lin, H, Lin, S, Awasthi, MK, Wang, Y and Xu, P (2021) Exploring the bacterial community and fermentation characteristics during silage fermentation of abandoned fresh tea leaves. Chemosphere 283, 131234.CrossRefGoogle ScholarPubMed
Lithourgidis, AS, Vasilakoglou, IB, Dhima, KV, Dordas, CA and Yiakoulaki, MD (2006) Forage yield and quality of common vetch mixtures with oat and triticale in two seeding ratios. Field Crops Research 99, 106113.CrossRefGoogle Scholar
Liu, W, Si, Q, Sun, L, Wang, Z, Liu, M, Du, S, Gentu, G and Jia, Y (2023) Effects of cellulase and xylanase addition on fermentation quality, aerobic stability, and bacteria composition of low water-soluble carbohydrates oat silage. Fermentation 9, 638.CrossRefGoogle Scholar
Marković, J, Blagojević, M, Kostić, I, Vasić, T, Anđelković, S, Petrović, M and Štrbanović, R (2018) Effect of bacterial inoculants application and seeding rate on common vetch-oat silage quality. Biotechnology in Animal Husbandry 34, 251257.CrossRefGoogle Scholar
Marković, J, Vasić, T, Petrović, M, Milenković, J, Bekčić, F, Lazarević, D and Babić, S (2022) Suitability of field pea: oat and common vetch-oat mixtures for ensiling. Proceedings XII International Scientific Agriculture Symposium AGROSYM 2021, pp. 195–199. Jahorina, Bosnia and Herzegovina.Google Scholar
Martinez Arbizu, P (2020) pairwiseAdonis: Pairwise multilevel comparison using adonis. R package version 0.4. Available at https://github.com/pmartinezarbizu/pairwiseAdonis (Accessed 2 June 2023).Google Scholar
McDonald, P, Henderson, R and Heron, SJE (1991) The Biochemistry of Silage, 2nd Edn. Marlow: Chalcombe Publications.Google Scholar
McMurdie, PJ and Holmes, S (2013) phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PloS One 8, e61217.CrossRefGoogle Scholar
Mordor Intelligence Report (2023) Silage additives market size & share analysis – growth trends & forecasts (2023–2028). Available at https://www.mordorintelligence.com/industry-reports/global-silage-additives-market-industry (Accessed 4 September 2023).Google Scholar
Muck, R (2013) Recent advances in silage microbiology. Agricultural and Food Science 22, 315.CrossRefGoogle Scholar
Ogunade, IM, Jiang, Y, Kim, DH, Cervantes, AP, Arriola, KG, Vyas, D, Weinberg, ZG, Jeong, KC and Adesogan, AT (2017) Fate of Escherichia coli O157: H7 and bacterial diversity in corn silage contaminated with the pathogen and treated with chemical or microbial additives. Journal of Dairy Science 100, 17801794.CrossRefGoogle ScholarPubMed
Ogunade, IM, Jiang, Y, Cervantes, AP, Kim, DH, Oliveira, AS, Vyas, D, Weinberg, ZG, Jeong, KC and Adesogan, AT (2018) Bacterial diversity and composition of alfalfa silage as analysed by Illumina MiSeq sequencing: effects of Escherichia coli O157: H7 and silage additives. Journal of Dairy Science 101, 20482059.CrossRefGoogle Scholar
Oksanen, J, Blanchet, FG, Kindt, R, Legendre, P, Minchin, PR, O'hara, RB, Simpson, GL, Solymos, P, Stevens, MHH and Wagner, H (2012) Package ‘vegan’. Community ecology package, version 2. Available at http://cran.r-project.org/web/packages/vegan (Accessed 2 June 2023).Google Scholar
Oude Elferink, SJ, Krooneman, J, Gottschal, JC, Spoelstra, SF, Faber, F and Driehuis, F (2001) Anaerobic conversion of lactic acid to acetic acid and 1, 2–propanediol by Lactobacillus buchneri. Applied and Environmental Microbiology 67, 125132.CrossRefGoogle ScholarPubMed
Pahlow, G, Muck, RE, Driehuis, F, Elferink, SJO and Spoelstra, SF (2003) Microbiology of ensiling. Silage Science and Technology 42, 3193.Google Scholar
Palleroni, NJ, Bradbury, JF (1993) Stenotrophomonas, a new bacterial genus for Xanthomonas maltophilia (Hugh 1980) Swings et al. 1983. International Journal of Systematic and Evolutionary Microbiology 43, 606609.Google ScholarPubMed
Pedroso, ADF, Nussio, LG, Paziani, SDF, Loures, DRS, Igarasi, MS, Coelho, RM, Packer, IH, Horii, J and Gomes, LH (2005) Fermentation and epiphytic microflora dynamics in sugar cane silage. Scientia Agricola 62, 427432.10.1590/S0103-90162005000500003CrossRefGoogle Scholar
Pessione, E (2012) Lactic acid bacteria contribution to gut microbiota complexity: lights and shadows. Frontiers in Cellular and Infection Microbiology 2, 86.10.3389/fcimb.2012.00086CrossRefGoogle ScholarPubMed
Quast, C, Pruesse, E, Yilmaz, P, Gerken, J, Schweer, T, Yarza, P, Peplies, J and Glöckner, FO (2012) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Research 41, 590596.CrossRefGoogle ScholarPubMed
Queiroz, OCM, Ogunade, IM, Weinberg, Z and Adesogan, AT (2018) Silage review: foodborne pathogens in silage and their mitigation by silage additives. Journal of Dairy Science 101, 41324142.CrossRefGoogle ScholarPubMed
Reich, LJ and Kung, L Jr (2010) Effects of combining Lactobacillus buchneri 40788 with various lactic acid bacteria on the fermentation and aerobic stability of corn silage. Animal Feed Science and Technology 159, 105109.CrossRefGoogle Scholar
Rivest, D, Lorente, M, Olivier, A and Messier, C (2013) Soil biochemical properties and microbial resilience in agroforestry systems: effects on wheat growth under controlled drought and flooding conditions. Science of the Total Environment 463, 5160.CrossRefGoogle ScholarPubMed
Romero, JJ, Zhao, Y, Balseca-Paredes, MA, Tiezzi, F, Gutierrez-Rodriguez, E and Castillo, MS (2017) Laboratory silo type and inoculation effects on nutritional composition, fermentation, and bacterial and fungal communities of oat silage. Journal of Dairy Science 100, 18121828.CrossRefGoogle ScholarPubMed
Rooke, JA and Hatfield, RD (2003) Biochemistry of ensiling. Silage Science and Technology 42, 95139.Google Scholar
Sahlin, K and Medvedev, P (2020) De novo clustering of long-read transcriptome data using a greedy, quality value-based algorithm. Journal of Computational Biology 27, 472484.CrossRefGoogle ScholarPubMed
Schweiger, P, Volland, S and Deppenmeier, U (2007) Overproduction and characterization of two distinct aldehyde-oxidizing enzymes from Gluconobacter oxydans 621H. Journal of Molecular Microbiology and Biotechnology 13, 147155.Google ScholarPubMed
Sun, L, Qiu, F, Zhang, X, Dai, X, Dong, X and Song, W (2008) Endophytic bacterial diversity in rice (Oryza sativa L.) roots estimated by 16S rDNA sequence analysis. Microbial Ecology 55, 415424.CrossRefGoogle ScholarPubMed
Toyama, T, Mori, K, Tanaka, Y, Ike, M and Morikawa, M (2022) Growth promotion of giant duckweed Spirodela polyrhiza (Lemnaceae) by Ensifer sp. SP4 through enhancement of nitrogen metabolism and photosynthesis. Molecular Plant-Microbe Interactions 35, 2838.CrossRefGoogle Scholar
Vaser, R, Sović, I, Nagarajan, N and Šikić, M (2017) Fast and accurate de novo genome assembly from long uncorrected reads. Genome Research 27, 737746.CrossRefGoogle ScholarPubMed
Vénica, CI, Perotti, MC and Bergamini, CV (2014) Organic acids profiles in lactose-hydrolyzed yogurt with different matrix composition. Dairy Science and Technology 94, 561580.CrossRefGoogle Scholar
Wang, S, Li, J, Dong, Z, Chen, L, Yuan, X and Shao, T (2018) The effects of lactic acid bacteria strains isolated from various substrates on the fermentation quality of common vetch (Vicia sativa L.) in Tibet. Grass and Forage Science 73, 639647.CrossRefGoogle Scholar
Wang, B, Gao, R, Wu, Z and Yu, Z (2020) Functional analysis of sugars in modulating bacterial communities and metabolomics profiles of Medicago sativa silage. Frontiers in Microbiology 11, 641.CrossRefGoogle ScholarPubMed
Wang, S, Chen, G, Yang, Y, Zeng, Z, Hu, Y and Zang, H (2021 a) Sowing ratio determines forage yields and economic benefits of oat and common vetch intercropping. Agronomy Journal 113, 26072617.CrossRefGoogle Scholar
Wang, M, Gao, R, Franco, M, Hannaway, DB, Ke, W, Ding, Z, Yu, Z and Guo, X (2021 b) Effect of mixing alfalfa with whole-plant corn in different proportions on fermentation characteristics and bacterial community of silage. Agriculture 11, 174.CrossRefGoogle Scholar
Wang, N, Fu, N and Chen, XD (2022 a) The extent and mechanism of the effect of protectant material in the production of active lactic acid bacteria powder using spray drying: a review. Current Opinion in Food Science 44, 100807.10.1016/j.cofs.2022.01.003CrossRefGoogle Scholar
Wang, S, Shao, T, Li, J, Zhao, J and Dong, Z (2022 b) Dynamics of fermentation profile, bacterial communities and their functional characteristics in red clover. The Journal of Agricultural Science 160, 535544.CrossRefGoogle Scholar
Wang, S, Wang, Y, Li, J, Dong, Z, Zhao, J, Nazar, M, Kaka, NA and Shao, T (2023) Assessing the impact of phyllosphere microbiota on dynamics of in–silo fermentation of Italian ryegrass harvested at heading and blooming stages. Journal of the Science of Food and Agriculture 103, 32723286.CrossRefGoogle ScholarPubMed
Wood, DE, Lu, J and Langmead, B (2019) Improved metagenomic analysis with Kraken 2. Genome Biology 20, 113.CrossRefGoogle ScholarPubMed
Wróbel, B, Nowak, J, Fabiszewska, A, Paszkiewicz-Jasińska, A and Przystupa, W (2023) Dry matter losses in silages resulting from epiphytic microbiota activity – A comprehensive study. Agronomy 13, 450.CrossRefGoogle Scholar
Xiao, Y, Sun, L, Wang, Z, Wang, W, Xin, X, Xu, L and Du, S (2022) Fermentation characteristics, microbial compositions, and predicted functional profiles of forage oat ensiled with Lactiplantibacillus plantarum or Lentilactobacillus buchneri. Fermentation 8, 707.CrossRefGoogle Scholar
Xu, Z, He, H, Zhang, S and Kong, J (2017) Effects of inoculants Lactobacillus brevis and Lactobacillus parafarraginis on the fermentation characteristics and microbial communities of corn stover silage. Scientific Reports 7, 19.Google ScholarPubMed
Yang, F, Zhao, S, Wang, Y, Fan, X, Wang, Y and Feng, C (2021) Assessment of bacterial community composition and dynamics in alfalfa silages with and without Lactobacillus plantarum inoculation using absolute quantification 16S rRNA sequencing. Frontiers in Microbiology 11, 629894.CrossRefGoogle ScholarPubMed
Zeng, T, Li, X, Guan, H, Yang, W, Liu, W, Liu, J, Du, Z, Li, X, Xiao, Q, Wang, X, Zhang, X, Huang, L, Xiang, Q, Peng, Q and Yan, Y (2020) Dynamic microbial diversity and fermentation quality of the mixed silage of corn and soybean grown in strip intercropping system. Bioresource Technology 313, 123655.CrossRefGoogle ScholarPubMed