Hostname: page-component-848d4c4894-ttngx Total loading time: 0 Render date: 2024-06-12T19:12:00.751Z Has data issue: false hasContentIssue false

Optimization of integrated pest management for powdery mildew (Unincula necator) control in a vineyard based on a combination of phenological, meteorological and aerobiological data

Published online by Cambridge University Press:  19 September 2012

M. FERNÁNDEZ-GONZÁLEZ*
Affiliation:
Department of Plant Biology and Soil Sciences, Faculty of Sciences, University of Vigo, Ourense Campus, E-32004, Ourense, Spain
F. J. RODRÍGUEZ-RAJO
Affiliation:
Department of Plant Biology and Soil Sciences, Faculty of Sciences, University of Vigo, Ourense Campus, E-32004, Ourense, Spain
O. ESCUREDO
Affiliation:
Department of Plant Biology and Soil Sciences, Faculty of Sciences, University of Vigo, Ourense Campus, E-32004, Ourense, Spain
M. J. AIRA
Affiliation:
Department of Botany, Pharmacy Faculty, University of Santiago of Compostela, Santiago of Compostela, E-15782, Spain
*
*To whom all correspondence should be addressed. Email: mfgonzalez@uvigo.es

Summary

Powdery mildew is one of the most important vineyard diseases. Infection requires the interaction of a susceptible host (a vine in a phenological phase susceptible to the pathogen), a virulent pathogen (the fungus Uncinula necator (Schw.) Burr) and an environment favourable for disease development (optimal meteorological conditions). The aim of the present study was the implementation of a system to predict powdery mildew infection periods in order to optimize and reduce the application of pesticide treatments in a vineyard. The study was conducted in a vineyard of the ‘Ribeiro’ Designation of Origin region located in north-western Spain from 2006 to 2011, during the Vitis vegetative period. The phenological study was conducted following the BBCH phenological scale and infection risk index (IRI) was calculated based on the maximum temperature. Aerobiological sampling was performed using a LANZONI VPPS-2000 volumetric trap. The results of the study show that the critical phenological stages for powdery mildew infection are 5 (inflorescence emergence), 6 (flowering) and 7 (development of fruit), as consequence of the high susceptibility of the vine. The IRI allows determination of the periods in which the meteorological conditions could facilitate fungal attacks during the aforementioned phenological phases. Finally, the aerobiological model helps to identify and predict the times of real infection risk among the possible periods described by the IRI with high accuracy, in order to avoid possible reappearance of infection symptoms in the vine. The combination of these three variables provides a valuable tool to establish an accurate, modern, integrated pest-management strategy in a vineyard.

Type
Crops and Soils Research Papers
Copyright
Copyright © Cambridge University Press 2012 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Albelda, Y. (2008). Aplicación de la fenología y aerobiología al cultivo de la vid (Vitis vinifera). Ph.D. Thesis, University of Vigo.Google Scholar
Amati, A., Piva, A., Castellari, M. & Arfelli, G. (1996). Preliminary studies on the effect of Oidium tuckeri on the phenolic composition of grapes and wines. Vitis 35, 149150.Google Scholar
Bendek, C., Torres, R., Campbell, P. & Latorre, B. (2002). Aportes al conocimiento y control del oídio de la vid. Aconex, Chile 76, 511.Google Scholar
Bendek, C. E., Campbell, P. A., Torres, R., Donoso, A. & Latorre, B. A. (2007). The risk assessment index in grape powdery mildew control decisions and the effect of temperature and humidity on conidial germination of Erysiphe necator. Spanish Journal of Agricultural Research 5, 522532.CrossRefGoogle Scholar
Blanco-Ward, D., Garcia Queijeiro, J. M. & Jones, G. V. (2007). Spatial climate variability and viticulture in the Miño River Valley of Spain. Vitis 46, 6370.Google Scholar
Calanca, P., Bolius, D., Weigel, A. P. & Liniger, M. A. (2011). Application of long-range weather forecast to agricultural decision problems in Europe. Journal of Agricultural Science, Cambridge 149, 1522.CrossRefGoogle Scholar
Calonnec, A., Cartolaro, P., Naulin, J. M., Bailey, D. & Langlais, M. (2008). A host-pathogen simulation model: powdery mildew of grapevine. Plant Pathology 57, 493508.CrossRefGoogle Scholar
Campbell, P., Bendek, C. & Latorre, B. A. (2007). Risk of powdery mildew (Erysiphe necator) outbreaks on grapevines in relation to cluster development. Ciencia e Investigación Agraria 34, 511.CrossRefGoogle Scholar
Carise, O., Savary, S. & Willocquet, L. (2008). Spatiotemporal relationships between disease development and airborne inoculum in unmanaged and managed Botrytis leaf blight epidemics. Phytopathology 98, 3844.CrossRefGoogle Scholar
Carroll, J. E. & Wilcox, W. F. (2003). Effects of humidity on the envelopment of grapevine powdery mildew. Phytopathology 93, 11371144.CrossRefGoogle Scholar
Chauhan, Y. S., Wright, G. C., Rachaputi, R. C. N., Holzworth, D., Broome, A., Krosch, S. & Robertson, M. J. (2010). Application of a model to assess aflatoxin risk in peanuts. Journal of Agricultural Science, Cambridge 148, 341351.CrossRefGoogle Scholar
Cortesi, P., Bisiach, M., Ricciolini, M. & Gadoury, D. M. (1997). Cleistothecia of Uncinula necator an additional source of inoculum in Italian vineyards. Plant Disease 81, 922926.CrossRefGoogle ScholarPubMed
Cortesi, P., Ottaviani, M. P. & Milgroom, M. G. (2004). Spatial and genetic analysis of a flag shoot subpopulation of Erysiphe necator in Italy. Phytopathology 94, 544550.CrossRefGoogle ScholarPubMed
Dalla Marta, A., Grifoni, D., Mancini, M., Storchi, P., Zipoli, G. & Orlandini, S. (2010). Analysis of the relationships between climate variability and grapevine phenology in the Nobile di Montepulciano wine production area. Journal of Agricultural Science, Cambridge 148, 657666.CrossRefGoogle Scholar
Day, W. (2011). Engineering advances for input reduction and systems management to meet the challenges of global food and farming futures. Journal of Agricultural Science, Cambridge 149 (Suppl. S1), 5561.CrossRefGoogle Scholar
Eitzinger, J., Orlandini, S., Stefanski, R. & Naylor, R. E. L. (2010). Climate change and agriculture: introductory editorial. Journal of Agricultural Science, Cambridge 148, 499500.CrossRefGoogle Scholar
Fernández-González, M., Rodríguez-Rajo, F. J., Jato, V. & Aira, M. J. (2009). Incidence of fungals in a vineyard of the denomination of origin Ribeiro (Ourense-North-Western Spain). Annals of Agricultural and Environmental Medicine 16, 263271.Google Scholar
Fernández-González, M., Escuredo, O., Rodríguez-Rajo, F. J., Aira, M. J. & Jato, V. (2011). Prediction of grape production by grapevine cultivar Godello in north-west Spain. Journal of Agricultural Science, Cambridge 149, 725736.CrossRefGoogle Scholar
Ficke, A., Gadoury, D. M., Seem, R. C. & Dry, I. B. (2003). Effects of ontogenic resistance upon establishment and growth of Uncinula necator on grape berries. Phytopathology 93, 556563.CrossRefGoogle ScholarPubMed
Gadoury, D. M. & Pearson, R. C. (1988). Initiation, development, dispersal and survival of cleistothecia of Uncinula necator in New York vineyards. Phytopathology 78, 14131421.CrossRefGoogle Scholar
Gadoury, D. M. & Pearson, R. C. (1990). Germination of ascospores and infection of Vitis by Uncinula necator. Phytopathology 80, 11981203.CrossRefGoogle Scholar
Gadoury, D. M., Seem, R. C., Pearson, R. C., Wilcox, W. F. & Dunst, R. M. (2001). Effects of powdery mildew on vine growth, yield and quality of Concord grapes. Plant Disease 85, 137140.CrossRefGoogle ScholarPubMed
Galán Soldevilla, C., Cariñanos González, P., Alcázar Teno, P. & Domínguez Vilches, E. (2007). Spanish Aerobiology Network (REA): Management and Quality Manual. Córdoba, Spain: University of Córdoba Publication Service.Google Scholar
Grove, G. G. (2004). Perennation of Uncinula necator in vineyards of eastern Washington. Plant Disease 88, 242247.CrossRefGoogle ScholarPubMed
Gubler, W. D., Rademacher, M. R. & Vasquez, S. J. (1999). Control of powdery mildew using the UC Davis Powdery Mildew Risk Index. APSnet Features. doi: 10.1094/APSnetFeature-1999–0199.CrossRefGoogle Scholar
Halleen, F. & Holz, G. (2001). An overview of the biology, epidemiology and control of Uncinula necator (powdery mildew) on grapevine, with reference to South Africa. South African Journal for Enology and Viticulture 22, 111121.Google Scholar
Hidalgo, L. (2002). Tratado de Viticultura General, 3rd edn. Madrid, Spain: Mundi-Prensa.Google Scholar
Jailloux, F., Thind, T. & Clerjeau, M. (1998). Release, germination, and pathogenicity of ascospores of Uncinula necator under controlled conditions. Canadian Journal of Botany 76, 777781.CrossRefGoogle Scholar
Jailloux, F., Willocquet, L., Chapuis, L. & Froidefond, G. (1999). Effect of weather factors on the release of ascospores of Uncinula necator, the cause of grape powdery mildew, in the Bordeaux region. Canadian Journal of Botany 77, 10441051.CrossRefGoogle Scholar
Jarvis, W. R., Gubler, W. D. & Grove, G. G. (2002). Epidemiology of powdery mildews in agricultural pathosystems. In The Powdery Mildews: a Comprehensive Treatise (Eds Bélanger, R. R., Bushnell, W. R., Dik, A. J. & Carver, T. L. W.), pp. 169199. St. Paul, MN: American Phytopathological Society.Google Scholar
Jeger, M. J. (1984). Relating disease progress to cumulative numbers of trapped spores: apple powdery mildew and scab epidemics in sprayed and unsprayed orchard plots. Plant Pathology 33, 517523.CrossRefGoogle Scholar
Kocmánková, E., Trnka, M., Eitzinger, J., Dubrovský, M., Štěpánek, P., Semerádová, D., Balek, J., Skalák, P., Farda, A., Juroch, J. & Zalud, Z. (2011). Estimating the impact of climate change on the occurrence of selected pests at a high spatial resolution: a novel approach. Journal of Agricultural Science, Cambridge 149, 185195.CrossRefGoogle Scholar
Lorenz, D. H., Eichhorn, K. W., Bleiholder, H., Klose, R., Meier, U., & Weber, E. (1994). Phänologische Entwicklungsstadien der Weinrebe (Vitis vinifera L. ssp. vinifera). Codierung und Beschreibung nach der erweiterten BBCH-Skala. Viticultural and Enological Science 49, 6670.Google Scholar
Magarey, P. A., Gadoury, D. M., Emmett, R. W., Biggins, L. T., Clarke, K., Wachtel, M. F., Wicks, T. J. & Seem, R. C. (1995). Cleisthotecia of Uncinula necator in Australia. Viticultural and Enological Science 50, 210218.Google Scholar
Meier, U. (2001). Growth Stages of Mono and Dicotyledonous Plants. BBCH Monograph, 2nd edn. Berlin: Federal Biological Research Centre for Agriculture and Forestry.Google Scholar
Moritz, C., Zinkernagel, V. & Kassemeyer, H. H. (1994). Investigation on release and germination of ascospores of Uncinula necator in South-West Germany. In Proceeding of the Second International Workshop on Grapevine Downy and Powdery Mildew Modelling (Ed. Hill, G. K.). Freiburg, Germany: Fachverlag Fraund.Google Scholar
Pearson, R. C. & Gadoury, D. M. (1987). Cleistothecia, the source of primary inoculum for grape powdery mildew in New York. Phytopathology 77, 15091514.CrossRefGoogle Scholar
Rodríguez-Rajo, F. J., Jato, V., Fernández-González, M. & Aira, M. J. (2010). The use of aerobiological methods for forecasting Botrytis spore concentrations in a vineyard. Grana 49, 5665.CrossRefGoogle Scholar
Rumbolz, J. & Gubler, W. D. (2005). Susceptibility of grapevine buds to infection by powdery mildew Erysiphe necator. Plant Pathology 54, 535548.CrossRefGoogle Scholar
Rügner, A., Rumbolz, J., Huber, B., Bleyer, G., Gisi, U., Kassemeyer, H. & Guggenheim, R. (2002). Formation of overwintering structures of Uncinula necator and colonization of grapevine under field conditions. Plant Pathology 51, 322330.CrossRefGoogle Scholar
Russell, P. E. (2005). A century of fungicide evolution. Journal of Agricultural Science, Cambridge 143, 1125.CrossRefGoogle Scholar
Stevens, R. B. (1960). The diseased population. In Plant Pathology, an Advanced Treatise, Vol. 3 (Eds Horsfall, J. G. & Dimond, A. E.), pp. 357429. New York: Academic Press.CrossRefGoogle Scholar
Walters, D. R. & Fountaine, J. M. (2009). Practical application of induced resistance to plant diseases: an appraisal of effectiveness under field conditions. Journal of Agricultural Science, Cambridge 147, 523535.CrossRefGoogle Scholar
Ypema, H. L. & Gubler, W. D. (2000). The distribution of early season grapevine shoots infected by Uncinula necator from year to year: a case study in two California Vineyards. American Journal of Enology and Viticulture 51, 16.CrossRefGoogle Scholar