Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-05-14T10:42:05.308Z Has data issue: false hasContentIssue false

Effect of bulk viscosity on the hypersonic compressible turbulent boundary layer

Published online by Cambridge University Press:  07 March 2024

Chaoyu Zheng
Affiliation:
School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, PR China
Yongliang Feng*
Affiliation:
School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, PR China Institute of Extreme Mechanics, School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, PR China
Xiaojing Zheng
Affiliation:
Research Center for Applied Mechanics, Xidian University, Xi'an 710071, PR China
*
Email address for correspondence: yongliang.feng@nwpu.edu.cn

Abstract

The impact of bulk viscosity is unclear with considering the increased dilatational dissipation and compressibility effects in hypersonic turbulence flows. In this study, we employ direct numerical simulations to conduct comprehensive analysis of the effect of bulk viscosity on hypersonic turbulent boundary layer flow over a flat plate. The results demonstrate that the scaling relations remain valid even when accounting for large bulk viscosity. However, the wall-normal velocity fluctuations $v_{rms}^{\prime \prime }$ decrease significantly in the viscous sublayer due to the enhanced bulk dilatational dissipation. The intensity of travelling-wave-like alternating positive and negative structures of instantaneous pressure fluctuations $p_{rms}^{\prime }$ in the near-wall region decreases distinctly after considering the bulk viscosity, which is attributed mainly to the reduction of compressible pressure fluctuations $p_{c,rms}^{+}$. Furthermore, the velocity divergence $\partial u_{i} / \partial x_{i}$ undergoes a significant decrease by bulk viscosity. In short, our results indicate that bulk viscosity can weaken the compressibility of the hypersonic turbulent boundary layer and becomes more significant as the Mach number increases and the wall temperature decreases. Notably, when the bulk-to-shear viscosity ratio of the gas reaches a few hundred levels ($\mu _b/\mu =O(10^2)$), and mechanical behaviour of the near-wall region ($\kern 0.06em y^+\le 30$) is of greater interest, the impact of bulk viscosity on the hypersonic cold-wall turbulent boundary layer may not be negligible.

Type
JFM Papers
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bernardini, M. & Pirozzoli, S. 2011 Inner/outer layer interactions in turbulent boundary layers: a refined measure for the large-scale amplitude modulation mechanism. Phys. Fluids 23 (6), 061701.10.1063/1.3589345CrossRefGoogle Scholar
Boukharfane, R., Ferrer, P.J.M., Mura, A. & Giovangigli, V. 2019 On the role of bulk viscosity in compressible reactive shear layer developments. Eur. J. Mech. – B/Fluids 77, 3247.Google Scholar
Bross, M., Scharnowski, S. & Khler, C.J. 2021 Large-scale coherent structures in compressible turbulent boundary layers. J. Fluid Mech. 911, A2.10.1017/jfm.2020.993CrossRefGoogle Scholar
Bruno, D. & Giovangigli, V. 2022 Internal energy relaxation processes and bulk viscosities in fluids. Fluids 7 (11), 356.Google Scholar
Chen, S., Wang, X., Wang, J., Wan, M. & Chen, S. 2019 Effects of bulk viscosity on compressible homogeneous turbulence. Phys. Fluids 31 (8), 085115.Google Scholar
Cheng, C., Chen, X., Zhu, W., Shyy, W. & Fu, L. 2024 Progress in physical modeling of compressible wall-bounded turbulent flows. Acta Mechanica Sin. 40, 323663.10.1007/s10409-024-23663-xCrossRefGoogle Scholar
Cogo, M., Salvadore, F., Picano, F. & Bernardini, M. 2022 Direct numerical simulation of supersonic and hypersonic turbulent boundary layers at moderate-high Reynolds numbers and isothermal wall condition. J. Fluid Mech. 945, A30.Google Scholar
Coleman, G.N., Kim, J. & Moser, R.D. 1995 A numerical study of turbulent supersonic isothermal-wall channel flow. J. Fluid Mech. 305, 159183.Google Scholar
Cramer, M.S. 2012 Numerical estimates for the bulk viscosity of ideal gases. Phys. Fluids 24 (6), 531.Google Scholar
Cramer, M.S. & Bahmani, F. 2014 Effect of large bulk viscosity on large-Reynolds-number flows. J. Fluid Mech. 751, 142163.Google Scholar
DeGottardi, W. & Matveev, K.A. 2023 Viscous dissipation in a gas of one-dimensional fermions with generic dispersion. Phys. Rev. B 107, 075442.Google Scholar
Dong, S., Tong, F., Yu, M., Chen, J., Yuan, X. & Wang, Q. 2022 Positive and negative pairs of fluctuating wall shear stress and heat flux in supersonic turbulent boundary layers. Phys. Fluids 34 (8), 085115.10.1063/5.0101968CrossRefGoogle Scholar
van Dreist, E.R. 1956 The problem of aerodynamic heating. Aeronaut. Engng Rev. 15 (10), 2641.Google Scholar
Duan, L., Beekman, I. & Martín, M.P. 2010 Direct numerical simulation of hypersonic turbulent boundary layers. Part 2. Effect of wall temperature. J. Fluid Mech. 655, 419445.Google Scholar
Duan, L., Beekman, I. & Martín, M.P. 2011 Direct numerical simulation of hypersonic turbulent boundary layers. Part 3. Effect of Mach number. J. Fluid Mech. 672, 245267.Google Scholar
Duan, L., Choudhari, M.M. & Zhang, C. 2016 Pressure fluctuations induced by a hypersonic turbulent boundary layer. J. Fluid Mech. 804, 578607.Google Scholar
Duan, L. & Martín, M.P. 2011 Direct numerical simulation of hypersonic turbulent boundary layers. Part 4. Effect of high enthalpy. J. Fluid Mech. 684, 2559.10.1017/jfm.2011.252CrossRefGoogle Scholar
Emanuel, G. 1992 Effect of bulk viscosity on a hypersonic boundary layer. Phys. Fluids A: Fluid Dyn. 4 (3), 491495.Google Scholar
Eu, B.C. & Ohr, Y.G. 2001 Generalized hydrodynamics, bulk viscosity, and sound wave absorption and dispersion in dilute rigid molecular gases. Phys. Fluids 13 (3), 744753.Google Scholar
Fu, L., Karp, M., Bose, S.T., Moin, P. & Urzay, J. 2021 Shock-induced heating and transition to turbulence in a hypersonic boundary layer. J. Fluid Mech. 909, A8.10.1017/jfm.2020.935CrossRefGoogle Scholar
Gaviglio, J. 1987 Reynolds analogies and experimental study of heat transfer in the supersonic boundary layer. Intl J. Heat Mass Transfer 30 (5), 911926.Google Scholar
Graves, R.E. & Argrow, B.M. 1999 Bulk viscosity: past to present. J. Thermophys. Heat Transfer 13 (3), 337342.Google Scholar
Griffin, K.P., Fu, L. & Moin, P. 2021 Velocity transformation for compressible wall-bounded turbulent flows with and without heat transfer. Proc. Natl Acad. Sci. 118 (34), e2111144118.10.1073/pnas.2111144118CrossRefGoogle ScholarPubMed
Gu, Z. & Ubachs, W. 2014 A systematic study of Rayleigh–Brillouin scattering in air, N$_2$, and O$_2$ gases. J. Chem. Phys. 141 (10), 104320.Google Scholar
Guarini, S., Moser, R., Shariff, K. & Wray, A. 2000 Direct numerical simulation of a supersonic turbulent boundary layer at Mach 2.5. J. Fluid Mech. 414, 133.Google Scholar
Hou, Y., Jin, K., Feng, Y. & Zheng, X. 2023 High-order targeted essentially non-oscillatory scheme for two-fluid plasma model. Appl. Math. Mech. 44 (6), 941960.Google Scholar
Huang, J., Duan, L. & Choudhari, M.M. 2022 Direct numerical simulation of hypersonic turbulent boundary layers: effect of spatial evolution and Reynolds number. J. Fluid Mech. 937, A3.Google Scholar
Huang, J., Nicholson, G.L., Duan, L., Choudhari, M.M. & Bowersox, R.D. 2020 Simulation and modeling of cold-wall hypersonic turbulent boundary layers on flat plate. In AIAA Scitech 2020 Forum.10.2514/6.2020-0571CrossRefGoogle Scholar
Huang, P.G., Coleman, G.N. & Bradshaw, P. 1995 Compressible turbulent channel flows: DNS results and modelling. J. Fluid Mech. 305, 185218.Google Scholar
Hunt, J.C.R., Wray, A.A. & Moin, P. 1988 Eddies, streams, and convergence zones in turbulent flows. Center for Turbulence Research.Google Scholar
Jaeger, F., Matar, O.K. & Müller, E.A. 2018 Bulk viscosity of molecular fluids. J. Chem. Phys. 148 (17), 174504.10.1063/1.5022752CrossRefGoogle ScholarPubMed
Jiang, G.-S. & Shu, C.-W. 1996 Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126 (1), 202228.10.1006/jcph.1996.0130CrossRefGoogle Scholar
Jiménez, J. 2013 Near-wall turbulence. Phys. Fluids 25 (10), 101302.10.1063/1.4824988CrossRefGoogle Scholar
Kosuge, S. & Aoki, K. 2022 Navier–Stokes equations and bulk viscosity for a polyatomic gas with temperature-dependent specific heats. Fluids 8 (1), 5.Google Scholar
Kustova, E., Mekhonoshina, M. & Kosareva, A. 2019 Relaxation processes in carbon dioxide. Phys. Fluids 31 (4), 046104.10.1063/1.5093141CrossRefGoogle Scholar
Lagha, M., Kim, J., Eldredge, J.D. & Zhong, X. 2011 A numerical study of compressible turbulent boundary layers. Phys. Fluids 23 (1), 187.10.1063/1.3541841CrossRefGoogle Scholar
Lee, H., Helm, C., Martín, P.M. & Williams, O.J.H. 2023 Compressible boundary layer velocity transformation based on a generalized form of the total stress. Phys. Rev. Fluids 8, 074604.Google Scholar
Lele, S.K. 1994 Compressibility effects on turbulence. Annu. Rev. Fluid Mech. 26 (1), 211254.Google Scholar
Li, J.Y., Yu, M., Sun, D., Liu, P.X. & Yuan, X.X. 2022 Wall heat transfer in high-enthalpy hypersonic turbulent boundary layers. Phys. Fluids 34 (8), 085102.10.1063/5.0100416CrossRefGoogle Scholar
Li, Q. & Wu, L. 2022 A kinetic model for rarefied flows of molecular gas with vibrational modes. arXiv:2201.06855Google Scholar
Li, X.L., Fu, D.X. & Ma, Y.W. 2006 Direct numerical simulation of a spatially evolving supersonic turbulent boundary layer at $Ma = 6$. Chinese Phys. Lett. 23 (6), 1519.Google Scholar
Liao, W., Peng, Y. & Luo, L.-S. 2009 Gas-kinetic schemes for direct numerical simulations of compressible homogeneous turbulence. Phys. Rev. E 80, 046702.Google Scholar
Liu, Q., Luo, Z., Tu, G., Deng, X., Cheng, P. & Zhang, P. 2021 Direct numerical simulations of a supersonic turbulent boundary layer subject to velocity–temperature coupled control. Phys. Rev. Fluids 6, 044603.Google Scholar
Mansour, N.N., Kim, J. & Moin, P. 1988 Reynolds-stress and dissipation-rate budgets in a turbulent channel flow. J. Fluid Mech. 194, 1544.Google Scholar
Martin, M.P. 2007 Direct numerical simulation of hypersonic turbulent boundary layers. Part 1. Initialization and comparison with experiments. J. Fluid Mech. 570, 347364.10.1017/S0022112006003107CrossRefGoogle Scholar
Mo, F., Li, Q., Zhang, L. & Gao, Z. 2023 Direct numerical simulation of hypersonic wall-bounded turbulent flows: an improved inflow boundary condition and applications. Phys. Fluids 35 (3), 035135.Google Scholar
Morkovin, M.V. 1962 Effects of compressibility on turbulent flows. Méc. Turbul. 367 (380), 26.Google Scholar
Nicholson, G.L., Huang, J., Duan, L., Choudhari, M.M., Morreale, B. & Bowersox, R.D. 2022 Budgets of Reynolds stresses and turbulent heat flux for hypersonic turbulent boundary layers subject to pressure gradients. In AIAA SCITECH 2022 Forum, p. 1059.Google Scholar
Ou, J., Wang, C. & Chen, J. 2024 Rarefaction effects on hypersonic boundary-layer stability. Acta Mechanica Sin. 40 (3), 123184.Google Scholar
Pan, S. & Johnsen, E. 2017 The role of bulk viscosity on the decay of compressible, homogeneous, isotropic turbulence. J. Fluid Mech. 833, 717744.Google Scholar
Pan, X., Shneider, M.N. & Miles, R.B. 2004 Coherent Rayleigh–Brillouin scattering in molecular gases. Phys. Rev. A 69 (3), 033814.Google Scholar
Pan, X., Shneider, M.N. & Miles, R.B. 2005 Power spectrum of coherent Rayleigh–Brillouin scattering in carbon dioxide. Phys. Rev. A 71 (4), 45801.Google Scholar
Passiatore, D., Sciacovelli, L., Cinnella, P. & Pascazio, G. 2021 Direct numerical simulation of a hypersonic boundary layer in chemical non-equilibrium. In 55th 3AF International Conference on Applied Aerodynamics.Google Scholar
Passiatore, D., Sciacovelli, L., Cinnella, P. & Pascazio, G. 2022 Thermochemical non-equilibrium effects in turbulent hypersonic boundary layers. J. Fluid Mech. 941, A21.Google Scholar
Pirozzoli, S., Grasso, F. & Gatski, T.B. 2004 Direct numerical simulation and analysis of a spatially evolving supersonic turbulent boundary layer at $M=2.25$. Phys. Fluids 16 (3), 530545.Google Scholar
Pirozzoli, S., Romero, J., Fatica, M., Verzicco, R. & Orlandi, P. 2021 One-point statistics for turbulent pipe flow up to $Re_{\tau } \approx 6000$. J. Fluid Mech. 926, A28.Google Scholar
Prangsma, G.J., Alberga, A.H. & Beenakker, J.J.M. 1973 Ultrasonic determination of the volume viscosity of N$_2$, CO, CH$_4$ and CD$_4$ between 77 and 300 K. Physica 64 (2), 278288.Google Scholar
Renzo, M.D. & Urzay, J. 2021 Direct numerical simulation of a hypersonic transitional boundary layer at suborbital enthalpies. J. Fluid Mech. 912, A29.Google Scholar
Rubesin, M.W. 1990 Extra compressibility terms for Favre-averaged two-equation models of inhomogeneous turbulent flows. Tech. Rep.Google Scholar
Sarkar, S., Erlebacher, G., Hussaini, M.Y. & Kreiss, H.O. 1991 The analysis and modelling of dilatational terms in compressible turbulence. J. Fluid Mech. 227, 473493.Google Scholar
Sharma, B. & Kumar, R. 2023 A brief introduction to bulk viscosity of fluids. arXiv:2303.08400Google Scholar
Sharma, B., Pareek, S. & Kumar, R. 2023 Bulk viscosity of dilute monatomic gases revisited. Eur. J. Mech. – B/Fluids 98, 3239.10.1016/j.euromechflu.2022.10.009CrossRefGoogle Scholar
Smits, A.J., Hultmark, M., Lee, M., Pirozzoli, S. & Wu, X. 2021 Reynolds stress scaling in the near-wall region of wall-bounded flows. J. Fluid Mech. 926, A31.Google Scholar
Stokes, G.G. 1851 On the effect of the internal friction of fluids on the motion of pendulums. Trans. Camb. Phil. Soc. 9, 8106.Google Scholar
Tang, J., Zhao, Z., Wan, Z.-H. & Liu, N.-S. 2020 On the near-wall structures and statistics of fluctuating pressure in compressible turbulent channel flows. Phys. Fluids 32 (11), 115121.Google Scholar
Tisza, L. 1942 Supersonic absorption and Stokes’ viscosity relation. Phys. Rev. 61 (7–8), 531.Google Scholar
Touber, E. 2019 Small-scale two-dimensional turbulence shaped by bulk viscosity. J. Fluid Mech. 875, 9741003.Google Scholar
Trettel, A. & Larsson, J. 2016 Mean velocity scaling for compressible wall turbulence with heat transfer. Phys. Fluids 28 (2), 026102.Google Scholar
Vieitez, M.O., van Duijn, E.-J., Ubachs, W., Witschas, B., Meijer, A., De Wijn, A.S., Dam, N.J. & van de Water, W. 2010 Coherent and spontaneous Rayleigh–Brillouin scattering in atomic and molecular gases and gas mixtures. Phys. Rev. A 82 (4), 043836.Google Scholar
Vincenti, W.G. & Kruger, C.H. 1965 Introduction to Physical Gas Dynamics. Wiley.Google Scholar
Volpiani, P.S., Iyer, P.S., Pirozzoli, S. & Larsson, J. 2020 Data-driven compressibility transformation for turbulent wall layers. Phys. Rev. Fluids 5, 052602.Google Scholar
Walz, A. 1969 Boundary Layers of Flow and Temperature. MIT Press.Google Scholar
Xu, D., Wang, J. & Chen, S. 2022 Skin-friction and heat-transfer decompositions in hypersonic transitional and turbulent boundary layers. J. Fluid Mech. 941, A4.10.1017/jfm.2022.269CrossRefGoogle Scholar
Xu, D., Wang, J. & Chen, S. 2023 Reynolds number and wall cooling effects on correlations between the thermodynamic variables in hypersonic turbulent boundary layers. J. Fluid Mech. 965, A4.Google Scholar
Xu, D., Wang, J., Wan, M., Yu, C. & Chen, S. 2021 a Compressibility effect in hypersonic boundary layer with isothermal wall condition. Phys. Rev. Fluids 6 (5), 054609.Google Scholar
Xu, D., Wang, J., Wan, M., Yu, C., Li, X. & Chen, S. 2021 b Effect of wall temperature on the kinetic energy transfer in a hypersonic turbulent boundary layer. J. Fluid Mech. 929, A33.Google Scholar
Yu, M., Xu, C.-X. & Pirozzoli, S. 2020 Compressibility effects on pressure fluctuation in compressible turbulent channel flows. Phys. Rev. Fluids 5 (11), 113401.10.1103/PhysRevFluids.5.113401CrossRefGoogle Scholar
Zhang, C., Duan, L. & Choudhari, M.M. 2017 Effect of wall cooling on boundary-layer-induced pressure fluctuations at Mach 6. J. Fluid Mech. 822, 530.10.1017/jfm.2017.212CrossRefGoogle Scholar
Zhang, C., Duan, L. & Choudhari, M.M. 2018 Direct numerical simulation database for supersonic and hypersonic turbulent boundary layers. AIAA J. 56 (11), 42974311.Google Scholar
Zhang, P.-J.-Y., Wan, Z.-H., Liu, N.-S., Sun, D.-J. & Lu, X.-Y. 2022 Wall-cooling effects on pressure fluctuations in compressible turbulent boundary layers from subsonic to hypersonic regimes. J. Fluid Mech. 946, A14.Google Scholar
Zhang, Y.-S., Bi, W.-T., Hussain, F. & She, Z.-S. 2014 A generalized Reynolds analogy for compressible wall-bounded turbulent flows. J. Fluid Mech. 739, 392420.Google Scholar
Zhu, Y., Zhang, C., Chen, X., Yuan, H., Wu, J., Chen, S., Lee, C. & Gad-el Hak, M. 2016 Transition in hypersonic boundary layers: role of dilatational waves. AIAA J. 54 (10), 30393049.10.2514/1.J054702CrossRefGoogle Scholar
Zuckerwar, A.J. & Ash, R.L. 2006 Variational approach to the volume viscosity of fluids. Phys. Fluids 18 (4), 047101.Google Scholar