Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-06-13T07:29:30.683Z Has data issue: false hasContentIssue false

Large-eddy simulation of a bi-periodic turbulent flow with effusion

Published online by Cambridge University Press:  25 February 2008

S. MENDEZ
Affiliation:
CERFACS, 42, Av. Gaspard Coriolis, 31057 Toulouse cedex 1, France
F. NICOUD*
Affiliation:
University Montpellier II, I3M CNRS UMR 5149, Place Eugène Bataillon, 34095 Montpellier cedex 5, France
*
Author to whom correspondence should be addressed: franck.nicoud@univ-montp2.fr

Abstract

Large-eddy simulations of a generic turbulent flow with discrete effusion are reported. The computational domain is periodic in both streamwise and spanwise directions and contains both the injection and the suction sides. The blowing ratio is close to 1.2 while the Reynolds number in the aperture is of order 2600. The numerical results for this fully developed bi-periodic turbulent flow with effusion are compared to available experimental data from a large-scale spatially evolving isothermal configuration. It is shown that many features are shared by the two flow configurations. The main difference is related to the mean streamwise velocity profile, which is more flat for the bi-periodic situation where the cumulative effect of an infinite number of upstream jets is accounted for. The necessity of considering both sides of the plate is also established by analysing the vortical structure of the flow and some differences with the classical jet-in-crossflow case are highlighted. Finally, the numerical results are analysed in terms of wall modelling for full-coverage film cooling. For the operating point considered, it is demonstrated that the streamwise momentum flux is dominated by non-viscous effects, although the area where only the viscous shear stress contributes is very large given the small porosity value (4%).

Type
Papers
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ammari, H.D., Hay, N. & Lampard, D. 1990 The effect of density ratio on the heat transfer coefficient from a film-cooled flat plate. Trans. ASME: J. Turbomach 112, 444450.Google Scholar
Andreopoulos, J. & Rodi, W. 1984 Experimental investigation of jets in a crossflow. J. Fluid Mech 138, 93127.CrossRefGoogle Scholar
Bazdidi-Tehrani, F. & Andrews, G.E. 1994 Full-coverage discrete hole film cooling : investigation of the effect of variable density ratio. J. Engng Gas Turbines Power 116, 587596.CrossRefGoogle Scholar
Bergeles, G., Gosman, A.D. & Launder, B.E. 1976 The near-field character of a jet discharged normal to a main stream. J. Heat Transfer 98, 373378.CrossRefGoogle Scholar
Bergeles, G., Gosman, A.D. & Launder, B.E. 1977 Near-field character of a jet discharged through a wall at 30 deg to a mainstream. AIAA J 15, 499504.CrossRefGoogle Scholar
Brundage, A.L., Plesniak, M.W. & Ramadhyani, S. 1999 Influence of coolant feed direction and hole length on film cooling jet velocity profiles. ASME Paper 99-GT-035.CrossRefGoogle Scholar
Champion, J.-L., DiMartino, P. & Coron, X. 2005 Influence of flow characteristics on the discharge coefficient of a multiperforated wall. In Turbo Expo 2005, Reno Hilton, Reno Tahoe, Nevada USA, June 6–9 2005, paper GT2005-68904.Google Scholar
Cho, H.H. & Goldstein, R.J. 1995 a Heat (mass) transfer and film cooling effectiveness with injection through discrete holes: Part i-within holes and on the back surface. Trans. ASME: J. Turbomach 117, 440450.Google Scholar
Cho, H.H. & Goldstein, R.J. 1995 b Heat (mass) transfer and film cooling effectiveness with injection through discrete holes: Part ii-on the exposed surface. Trans. ASME: J. Turbomach 117, 451460.Google Scholar
Colin, O. & Rudgyard, M. 2000 Development of high-order Taylor-Galerkin schemes for unsteady calculations. J. Comput Phys 162, 338371.CrossRefGoogle Scholar
Cortelezzi, L. & Karagozian, A.R. 2001 On the formation of the counter-rotating vortex pair in transverse jets. J. Fluid Mech 446, 347373.CrossRefGoogle Scholar
Crawford, M.E., Kays, W.M. & Moffat, R.J. 1980 Full-coverage film cooling. part i: Comparison of heat transfer data for three injection angles. J. Engng Power 102, 10001005.CrossRefGoogle Scholar
Dorignac, E., Vullierme, J.J., Broussely, M., Foulon, C. & Mokkadem, M. 2005 Experimental heat transfer on the windward surface of a perforated flat plate. Intl J. Thermal Sci 44, 885893.CrossRefGoogle Scholar
Eriksen, V.L. & Goldstein, R.J. 1974 Heat transfer and film cooling following injection through inclined circular tubes. J. Heat Transfer 96, 239245.CrossRefGoogle Scholar
Errera, M.P. & Chemin, S. 2004 A fluid-solid thermal coupling applied to an effusion cooling system. In 34th Fluid Dynamics Conference and Exhibit, Portland, Oregon.CrossRefGoogle Scholar
Fric, T.F. & Roshko, A. 1994 Vortical structure in the wake of a transverse jet. J. Fluid Mech 279, 147.CrossRefGoogle Scholar
Goldstein, R.J. 1971 Advances in Heat Transfer. AcademicGoogle Scholar
Gritsch, M., Schultz, A. & Wittig, S. 2001 Effect of crossflows on the discharge coefficient of film cooling holes with varying angles of inclination and orientation. Trans. ASME: J. Turbomach 123, 781787.Google Scholar
Gustafsson, K. M. B. 2001 Experimental studies of effusion cooling. PhD thesis, Chalmers University of Technology. Göteborg.Google Scholar
Hale, C.A., Plesniak, M.W. & Ramadhyani, S. 2000 Structural features and surface heat transfer associated with a row of short-hole jets in crossflow. Intl. J. Heat Fluid Flow 21, 542553.CrossRefGoogle Scholar
Ham, F. & Iaccarino, G. 2004 Energy conservation in collocated discretization schemes on unstructured meshes. In Annual Research Briefs 2004, pp. 314. Center for Turbulence Research, NASA Ames/Stanford Univ.Google Scholar
Harrington, M.K, McWaters, M.A., Bogard, D. G. A., Lemmon, C. & Thole, K.A. 2001 Full-coverage film cooling with short normal injection holes. ASME TURBOEXPO 2001, 2001-GT-0130.Google Scholar
Hunt, J. C. R., Wray, A.A. & Moin, P. 1988 Eddies, streams, and convergence zones in turbulent flows. In Proc. Summer Program CTR NASA Ames - Stanford University.Google Scholar
Iourokina, I.V. & Lele, S.K. 2006 Large eddy simulation of film-cooling above the flat surface with a large plenum and short exit holes. AIAA Paper 2006-1102.CrossRefGoogle Scholar
Ivanov, Y.V. 1963 Shape of the centerline of an axisymmetric fan type jet in a cross flow. Izv. VUZ Aviotsionnaya Teknika 4.Google Scholar
Kelso, R.M., Lim, T.T. & Perry, A.E. 1996 An experimental study of round jets in cross-flow. J. Fluid Mech 306, 111144.CrossRefGoogle Scholar
Lefebvre, A.H. 1999 Gas Turbines Combustion. Taylor & Francis.Google Scholar
Leylek, J.H. & Zerkle, R.D. 1994 Discrete-jet film cooling: A comparison of computational results with experiments. Trans. ASME: J. Turbomach 116, 358368.Google Scholar
MacManus, D.G. & Eaton, J.A. 2000 Flow physics of discrete boundary layer suction-measurements and predictions. J. Fluid Mech 417, 4775.CrossRefGoogle Scholar
Margason, R.J. 1968 The path of a jet directed at large angles to a subsonic free stream. TN D-4919. NASA.Google Scholar
Margason, R.J. 1993 Fifty years of jet in crossflow research. In Computational and Experimental Assessment of Jets in Crossflow. AGARD-CP-534, pp. 141. Winchester, UK.Google Scholar
Mayle, R. E. & Camarata, F. J. 1975 Multihole cooling effectiveness and heat transfer. J. Heat Transfer 97, 534538.CrossRefGoogle Scholar
Mendez, S., Eldredge, J.D., Nicoud, F., Poinsot, T., Shoeybi, M. & Iaccarino, G. 2006 Numerical investigation and preliminary modeling of a turbulent flow over a multi-perforated plate. In Proc. Summer Program CTR. NASA Ames - Stanford University.Google Scholar
Mendez, S. & Nicoud, F. 2007 Numerical investigation of an anisothermal turbulent flow with effusion. In 5th Intl Symposium on Turbulence and Shear Flow Phenomena, pp. 791–796.Google Scholar
Mendez, S., Nicoud, F. & Miron, P. 2005 Direct and large-eddy simulations of a turbulent flow with effusion. In ERCOFTAC WORKSHOP on Direct and Large-Eddy Simulations 6, Poitiers, France.Google Scholar
Metzger, D. E., Takeuchi, D. I. & Kuenstler, P. A. 1973 Effectiveness and heat transfer with full-coverage film-cooling. ASME paper 73-GT-18. J. Engng. Power. 95, 180184.CrossRefGoogle Scholar
Miron, P. 2005 étude expérimentale des lois de parois et du film de refroidissement produit par une zone multiperforée sur une paroi plane. PhD thesis, Université de Pau et des Pays de l'Adour.Google Scholar
Miron, P., Bérat, C. & Sabelnikov, V. 2004 Effect of blowing rate on the film cooling coverage on a multi-holed plate: application on combustor walls. In Eighth Intl Conference on Heat Transfer, Lisbon, Portugal.Google Scholar
Moin, P. & Mahesh, K. 1998 Direct numerical simulation: A tool in turbulence research. Annu. Rev. Fluid Mech 30, 539578.CrossRefGoogle Scholar
Moureau, V., Lartigue, G., Sommerer, Y., Angelberger, C., Colin, O. & Poinsot, T. 2005 Numerical methods for unsteady compressible multi-component reacting flows on fixed and moving grids. J. Comput Phys 202, 710736.CrossRefGoogle Scholar
Muppidi, S. & Mahesh, K. 2007 Direct numerical simulation of round turbulent jets in crossflow. J. Fluid Mech 574, 5984.CrossRefGoogle Scholar
Nicoud, F. & Ducros, F. 1999 Subgrid-scale stress modelling based on the square of the velocity gradient tensor. Flow, Turb. Combust 62, 183200.CrossRefGoogle Scholar
Papanicolaou, E., Giebert, D., Koch, R. & Schultz, A. 2001 A conservation-based discretization approach for conjugate heat transfer calculations in hot-gas ducting turbomachinery components. Intl J. Heat Mass Transfer 44, 34133429.CrossRefGoogle Scholar
Peet, Y.V. 2006 Film cooling from inclined cylindrical holes using Large-Eddy Simulations. PhD thesis, Stanford University.Google Scholar
Peterson, S.D. & Plesniak, M.W. 2002 Short-hole jet-in-crossflow velocity field and its relationship to film-cooling performance. Exps. Fluids 33, 889898.CrossRefGoogle Scholar
Peterson, S.D. & Plesniak, M.W. 2004 a Evolution of jets emanating from short holes into crossflow. J. Fluid Mech 503, 5791.CrossRefGoogle Scholar
Peterson, S.D. & Plesniak, M.W. 2004 b Surface shear stress measurements around multiple jets in crossflow using the fringe imaging skin friction technique. Exps. Fluids 37, 497503.CrossRefGoogle Scholar
Pietrzyk, J.R., Bogard, D.G. & Crawford, M.E. 1989 Hydrodynamic measurements of jets in crossflow for gas turbine film cooling applications. Trans. ASME: J. Turbomach 111, 139145.Google Scholar
Piomelli, U., Ferziger, J.H., Moin, P. & Kim, J. 1989 New approximate boundary conditions for large eddy simulations of wall-bounded flows. Phys. Fluids A 1, 1061–68.CrossRefGoogle Scholar
Prière, C., Gicquel, L. Y. M., Gajan, P., Strzelecki, A., Poinsot, T. & Bérat, C. 2005 Experimental and numerical studies of dilution systems for low emission combustors. AIAA J 43, 17531766.CrossRefGoogle Scholar
Prière, C., Gicquel, L. Y. M., Kaufmann, A., Krebs, W. & Poinsot, T. 2004 LES predictions of mixing enhancement for jets in cross-flows. J. Turbulence 5, 005.CrossRefGoogle Scholar
Renze, P., Meinke, M. & Schröder, W. 2006 LES of turbulent mixing in film cooling flows. In Conference on Turbulence and Interactions TI 2006, May 29–June 2, 2006, Porquerolles, France.Google Scholar
Rouvreau, S. 2001 étude expérimentale de la structure moyenne et instantanée d'un film produit par une zone multiperforée sur une paroi plane. application au refroidissement des chambres de combustion des moteurs aéronautiques. PhD thesis, ENSMA et Faculté des Sciences Fondamentales et Appliquées.Google Scholar
Schlüter, J.U. & Schönfeld, T. 2000 LES of jets in crossflow and its application to a gas turbine burner. Flow, Turb. Combust 65, 177203.CrossRefGoogle Scholar
Schmitt, P., Poinsot, T., Schuermans, B. & Geigle, K. 2007 Large-eddy simulation and experimental study of heat transfer, nitric oxide emissions and combustion instability in a swirled turbulent high-pressure burner. J. Fluid Mech 570, 1746.CrossRefGoogle Scholar
Schönfeld, T. & Rudgyard, M. 1999 Steady and unsteady flows simulations using the hybrid flow solver AVBP. AIAA J 37, 13781385.CrossRefGoogle Scholar
Simpson, R.L. 1970 Characteristics of turbulent boundary layers at low reynolds numbers with and without transpiration. J. Fluid Mech 42, 769802.CrossRefGoogle Scholar
Sinha, A.K., Bogard, D.G. & Crawford, M.E. 1991 Film-cooling effectiveness downstream of a single row of holes with variable density ratio. Trans. ASME: J. Turbomach 113, 442449.Google Scholar
Smith, S.H. & Mungal, M.G. 1998 Mixing, structure and scaling of the jet in crossflow. J. Fluid Mech 357, 83122.CrossRefGoogle Scholar
Staffelbach, G., Gicquel, L. Y. M. & Poinsot, T. 2006 Highly parallel large eddy simulations of multiburner configurations in industrial gas turbines. Lecture Notes in Computational Science and Engineering - Complex effects in Large Eddy Simulations, vol.56, pp.325–336.Google Scholar
Thompson, K.W. 1990 Time dependent boundary conditions for hyperbolic systems. J. Comput. Phys 89, 439461.CrossRefGoogle Scholar
Tyagi, M. & Acharya, S. 2003 Large eddy simulation of film cooling flow from an inclined cylindrical jet. ASME J. Turbomach 125, 734742.CrossRefGoogle Scholar
Walters, D. K. & Leylek, J. H. 2000 A detailed analysis of film-cooling physics: Part 1- streamwise injection with cylindrical holes. Trans. ASME: J. Turbomach 122, 102112.Google Scholar
Yavuzkurt, S., Moffat, R.J. & Kays, W.M. 1980 a Full coverage film cooling. Part 1. Three-dimensional measurements of turbulence structure. J. Fluid Mech 101, 129158.CrossRefGoogle Scholar
Yavuzkurt, S., Moffat, R.J. & Kays, W.M. 1980 b Full coverage film cooling. Part 2. Prediction of the recovery-region hydrodynamics. J. Fluid Mech 101, 159178.CrossRefGoogle Scholar
Yu, D., Ali, M.S. & Lee, J. H.W. 2006 Multiple tandem jets in cross-flow. J. Hydr. Engng 9, 971982.CrossRefGoogle Scholar
Yuan, L.L., Street, R.L. & Ferziger, J.H. 1999 Large-eddy simulations of a round jet in crossflow. J. Fluid Mech 379, 71104.CrossRefGoogle Scholar