Hostname: page-component-848d4c4894-p2v8j Total loading time: 0.001 Render date: 2024-05-16T17:13:08.429Z Has data issue: false hasContentIssue false

The modulation of coherent structures by the near-wall motions of particles

Published online by Cambridge University Press:  23 February 2024

Yuen Feng
Affiliation:
Center for Particle-Laden Turbulence, Lanzhou University, Lanzhou 730000, PR China
Hongyou Liu*
Affiliation:
Center for Particle-Laden Turbulence, Lanzhou University, Lanzhou 730000, PR China
Xiaojing Zheng
Affiliation:
Research Center for Applied Mechanics, Xidian University, Xi'an 710071, PR China
*
Email address for correspondence: liuhongyou@lzu.edu.cn

Abstract

Particle–wall interaction generates strong particle near-wall motion, including collision bounce and impact splashing. To distinguish the effect of particles and particle near-wall motions on the turbulent coherent structure, this study carried out three different cases of sand-laden two-phase flow measurements: a uniform sand release at the top, local-laying sand bed and global-laying sand bed (Liu et al., J. Fluid Mech., vol. 943, 2022, A8). Based on large field of view particle image velocimetry/particle tracking velocimetry measurements, we obtained the velocity field of a two-dimensional gas–solid two-phase dilute faction flow $(\varPhi _{v} \sim O(10^{-4}))$ with a friction Reynolds number $R e_{\tau }$ of 3950. Results indicate that particles weaken the high- and low-velocity iso-momentum zones and hairpin vortices, resulting in the increased length scale of the coherent structure. However, the collision bounce and impact splashing break up the inner iso-momentum zone and hairpin vortices while enhancing them in the outer region, thus reducing the structure scale. In addition, the upward-moving particles increase the large-scale structure inclination angle, while the downward-moving particles decrease it. The linear coherence spectrum analysis suggests that the particles themselves do not change the structural self-similarity, but their saltation motions disrupt the similarity of the near-wall structure, making the inclination angle decrease with the scale, and the generated ascending particles reduce the aspect ratio of the streamwise to wall-normal direction in the outer region.

Type
JFM Papers
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adrian, R.J., Christensen, K.T. & Liu, Z.C. 2000 Analysis and interpretation of instantaneous turbulent velocity fields. Exp. Fluids 29 (3), 275290.CrossRefGoogle Scholar
Baars, W.J., Hutchins, N. & Marusic, I. 2016 Spectral stochastic estimation of high-Reynolds-number wall-bounded turbulence for a refined inner-outer interaction model. Phys. Rev. Fluids 1 (5), 054406.CrossRefGoogle Scholar
Baars, W.J., Hutchins, N. & Marusic, I. 2017 a Reynolds number trend of hierarchies and scale interactions in turbulent boundary layers. Phil. Trans. R. Soc. Lond. A 375 (2089), 20160077.Google ScholarPubMed
Baars, W.J., Hutchins, N. & Marusic, I. 2017 b Self-similarity of wall-attached turbulence in boundary layers. J. Fluid Mech. 823, R2.CrossRefGoogle Scholar
Baars, W.J. & Marusic, I. 2020 a Data-driven decomposition of the streamwise turbulence kinetic energy in boundary layers. Part 1. Energy spectra. J. Fluid Mech. 882, A25.CrossRefGoogle Scholar
Baars, W.J. & Marusic, I. 2020 b Data-driven decomposition of the streamwise turbulence kinetic energy in boundary layers. Part 2. Integrated energy and $A_1$. J. Fluid Mech. 882, A26.CrossRefGoogle Scholar
Baidya, R., Philip, J., Hutchins, N., Monty, J.P. & Marusic, I. 2019 Spatial averaging effects on the streamwise and wall-normal velocity measurements in a wall-bounded turbulence using a cross-wire probe. Meas. Sci. Technol. 30 (8), 085303.CrossRefGoogle Scholar
Baker, L.J. & Coletti, F. 2021 Particle–fluid–wall interaction of inertial spherical particles in a turbulent boundary layer. J. Fluid Mech. 908, A39.CrossRefGoogle Scholar
Berk, T. & Coletti, F. 2020 Transport of inertial particles in high-Reynolds-number turbulent boundary layers. J. Fluid Mech. 903, A18.CrossRefGoogle Scholar
Bhaganagar, K., Kim, J. & Coleman, G. 2004 Effect of roughness on wall-bounded turbulence. Flow Turbul. Combust. 72 (2–4), 463492.CrossRefGoogle Scholar
Chauhan, K., Hutchins, N., Monty, J. & Marusic, I. 2013 Structure inclination angles in the convective atmospheric surface layer. Boundary-Layer Meteorol. 147, 4150.CrossRefGoogle Scholar
Christensen, K.T. & Adrian, R.J. 2001 Statistical evidence of hairpin vortex packets in wall turbulence. J. Fluid Mech. 431, 433443.CrossRefGoogle Scholar
Clauser, F.H. 1956 The turbulent boundary layer. Adv. Appl. Mech. 4, 151.CrossRefGoogle Scholar
Costa, P., Brandt, L. & Picano, F. 2021 Near-wall turbulence modulation by small inertial particles. J. Fluid Mech. 922, A9.CrossRefGoogle Scholar
Cui, G., Ruhman, I. & Jacobi, I. 2022 Spatial detection and hierarchy analysis of large-scale particle clusters in wall-bounded turbulence. J. Fluid Mech. 942, A52.CrossRefGoogle Scholar
Del Álamo, J.C., Jimenez, J., Zandonade, P. & Moser, R.D. 2006 Self-similar vortex clusters in the turbulent logarithmic region. J. Fluid Mech. 561, 329358.CrossRefGoogle Scholar
Dennis, D.J.C. 2015 Coherent structures in wall-bounded turbulence. An. Acad. Bras. Ciênc. 87, 11611193.CrossRefGoogle ScholarPubMed
Dennis, D.J.C. & Nickels, T.B. 2011 a Experimental measurement of large-scale three-dimensional structures in a turbulent boundary layer. Part 1. Vortex packets. J. Fluid Mech. 673, 180217.CrossRefGoogle Scholar
Dennis, D.J.C. & Nickels, T.B. 2011 b Experimental measurement of large-scale three-dimensional structures in a turbulent boundary layer. Part 2. Long structures. J. Fluid Mech. 673, 218244.CrossRefGoogle Scholar
Deshpande, R., Monty, J.P. & Marusic, I. 2019 Streamwise inclination angle of large wall-attached structures in turbulent boundary layers. J. Fluid Mech. 877, R4.CrossRefGoogle Scholar
Deshpande, R., de Silva, C.M., Lee, M., Monty, J.P. & Marusic, I. 2021 Data-driven enhancement of coherent structure-based models for predicting instantaneous wall turbulence. Intl J. Heat Fluid Flow 92, 108879.CrossRefGoogle Scholar
Deshpande, R., de Silva, C.M. & Marusic, I. 2022 Evidence that turbulent superstructures are concatenations of geometrically self-similar coherent motions. arXiv:2210.06039.Google Scholar
Dritselis, C.D. & Vlachos, N.S. 2008 Numerical study of educed coherent structures in the near-wall region of a particle-laden channel flow. Phys. Fluids 20 (5), 055103.CrossRefGoogle Scholar
Dritselis, C.D. & Vlachos, N.S. 2011 Numerical investigation of momentum exchange between particles and coherent structures in low Re turbulent channel flow. Phys. Fluids 23 (2), 025103.CrossRefGoogle Scholar
Elghobashi, S. 1994 On predicting particle-laden turbulent flows. Appl. Sci. Res. 52, 309329.CrossRefGoogle Scholar
Gao, W., Samtaney, R. & Richter, D.H. 2023 Direct numerical simulation of particle-laden flow in an open channel at $Re_{\tau } \approx 5186$. J. Fluid Mech. 957, A3.CrossRefGoogle Scholar
Hu, R., Yang, X.I.A. & Zheng, X. 2020 Wall-attached and wall-detached eddies in wall-bounded turbulent flows. J. Fluid Mech. 885, A30.CrossRefGoogle Scholar
Hunt, J.C.R., Wray, A.A. & Moin, P. 1988 Eddies, streams and convergence zones in turbulent flows. In Proceedings of the Summer Program 1988, Center for Turbulence Research, pp. 193–208. Stanford University.Google Scholar
Hutchins, N., Hambleton, W.T. & Marusic, I. 2005 Inclined cross-stream stereo particle image velocimetry measurements in turbulent boundary layers. J. Fluid Mech. 541, 2154.CrossRefGoogle Scholar
Hutchins, N. & Marusic, I. 2007 Evidence of very long meandering features in the logarithmic region of turbulent boundary layers. J. Fluid Mech. 579, 128.CrossRefGoogle Scholar
Hwang, J. & Sung, H.J. 2018 Wall-attached structures of velocity fluctuations in a turbulent boundary layer. J. Fluid Mech. 856, 958983.CrossRefGoogle Scholar
Jeong, J. & Hussain, F. 1995 On the identification of a vortex. J. Fluid Mech. 285, 6994.CrossRefGoogle Scholar
Jeong, J., Hussain, F., Schoppa, W. & Kim, J. 1997 Coherent structures near the wall in a turbulent channel flow. J. Fluid Mech. 332, 185214.CrossRefGoogle Scholar
Ji, C., Munjiza, A., Avital, E., Xu, D. & Williams, J. 2014 Saltation of particles in turbulent channel flow. Phys. Rev. E 89 (5), 052202.CrossRefGoogle ScholarPubMed
Jie, Y., Cui, Z., Xu, C. & Zhao, L. 2022 On the existence and formation of multi-scale particle streaks in turbulent channel flows. J. Fluid Mech. 935, A18.CrossRefGoogle Scholar
Kadivar, M., Tormey, D. & McGranaghan, G. 2021 A review on turbulent flow over rough surfaces: fundamentals and theories. Intl J. Thermofluids 10, 100077.CrossRefGoogle Scholar
Kidanemariam, A.G., Chan-Braun, C., Doychev, T. & Uhlmann, M. 2013 Direct numerical simulation of horizontal open channel flow with finite-size, heavy particles at low solid volume fraction. New J. Phys. 15 (2), 025031.CrossRefGoogle Scholar
Kidanemariam, A.G. & Uhlmann, M. 2017 Formation of sediment patterns in channel flow: minimal unstable systems and their temporal evolution. J. Fluid Mech. 818, 716743.CrossRefGoogle Scholar
Kiger, K.T. & Pan, C. 2000 PIV technique for the simultaneous measurement of dilute two-phase flows. Trans. ASME J. Fluids Engng 122 (4), 811818.CrossRefGoogle Scholar
Kiger, K.T. & Pan, C 2002 Suspension and turbulence modification effects of solid particulates on a horizontal turbulent channel flow. J. Turbul. 3 (1), 019.CrossRefGoogle Scholar
Kim, K.C. & Adrian, R.J. 1999 Very large-scale motion in the outer layer. Phys. Fluids 11 (2), 417422.CrossRefGoogle Scholar
Kline, S.J., Reynolds, W.C., Schraub, F.A. & Runstadler, P.W. 1967 The structure of turbulent boundary layers. J. Fluid Mech. 30 (4), 741773.CrossRefGoogle Scholar
Krug, D., Baars, W.J., Hutchins, N. & Marusic, I. 2019 Vertical coherence of turbulence in the atmospheric surface layer: connecting the hypotheses of townsend and davenport. Boundary-Layer Meteorol. 172 (2), 199214.CrossRefGoogle Scholar
Lee, J. & Lee, C. 2015 Modification of particle-laden near-wall turbulence: effect of Stokes number. Phys. Fluids 27 (2), 023303.CrossRefGoogle Scholar
Lee, J. & Lee, C. 2019 The effect of wall-normal gravity on particle-laden near-wall turbulence. J. Fluid Mech. 873, 475507.CrossRefGoogle Scholar
Lee, J.H. & Sung, H.J. 2011 Very-large-scale motions in a turbulent boundary layer. J. Fluid Mech. 673, 80120.CrossRefGoogle Scholar
Li, B. & McKenna Neuman, C. 2012 Boundary-layer turbulence characteristics during aeolian saltation. Geophys. Res. Lett. 39 (11), L11402.CrossRefGoogle Scholar
Li, J., Wang, H., Liu, Z., Chen, S. & Zheng, C. 2012 An experimental study on turbulence modification in the near-wall boundary layer of a dilute gas-particle channel flow. Exp. Fluids 53 (5), 13851403.CrossRefGoogle Scholar
Li, X., Hutchins, N., Zheng, X., Marusic, I. & Baars, W.J. 2022 Scale-dependent inclination angle of turbulent structures in stratified atmospheric surface layers. J. Fluid Mech. 942, A38.CrossRefGoogle Scholar
Ligrani, P.M. & Moffat, R.J. 1986 Structure of transitionally rough and fully rough turbulent boundary layers. J. Fluid Mech. 162, 6998.CrossRefGoogle Scholar
Liu, H., Feng, Y. & Zheng, X. 2022 Experimental investigation of the effects of particle near-wall motions on turbulence statistics in particle-laden flows. J. Fluid Mech. 943, A8.CrossRefGoogle Scholar
Liu, H.Y., Bo, T.L. & Liang, Y.R. 2017 The variation of large-scale structure inclination angles in high Reynolds number atmospheric surface layers. Phys. Fluids 29 (3), 035104.CrossRefGoogle Scholar
Liu, X., Luo, K. & Fan, J. 2016 Turbulence modulation in a particle-laden flow over a hemisphere-roughened wall. Intl J. Multiphase Flow 87, 250262.CrossRefGoogle Scholar
Lozano-Durán, A., Flores, & Jiménez, J. 2012 The three-dimensional structure of momentum transfer in turbulent channels. J. Fluid Mech. 694, 100130.CrossRefGoogle Scholar
Luo, K., Wang, Z., Li, D., Tan, J. & Fan, J. 2017 Fully resolved simulations of turbulence modulation by high-inertia particles in an isotropic turbulent flow. Phys. Fluids 29 (11), 113301.CrossRefGoogle Scholar
Marchioli, C. & Soldati, A. 2002 Mechanisms for particle transfer and segregation in a turbulent boundary layer. J. Fluid Mech. 468, 283315.CrossRefGoogle Scholar
Marusic, I. 2001 On the role of large-scale structures in wall turbulence. Phys. Fluids 13 (3), 735743.CrossRefGoogle Scholar
Marusic, I., McKeon, B.J., Monkewitz, P.A., Nagib, H.M., Smits, A.J. & Sreenivasan, K.R. 2010 Wall-bounded turbulent flows at high reynolds numbers: recent advances and key issues. Phys. Fluids 22 (6), 065103.CrossRefGoogle Scholar
Marusic, I. & Monty, J.P. 2019 Attached eddy model of wall turbulence. Annu. Rev. Fluid Mech. 51, 4974.CrossRefGoogle Scholar
Moin, P. & Kim, J. 1985 The structure of the vorticity field in turbulent channel flow. Part 1. Analysis of instantaneous fields and statistical correlations. J. Fluid Mech. 155, 441464.CrossRefGoogle Scholar
Motoori, Y. & Goto, S. 2019 Generation mechanism of a hierarchy of vortices in a turbulent boundary layer. J. Fluid Mech. 865, 10851109.CrossRefGoogle Scholar
Motoori, Y. & Goto, S. 2021 Hierarchy of coherent structures and real-space energy transfer in turbulent channel flow. J. Fluid Mech. 911, A27.CrossRefGoogle Scholar
Pähtz, T. & Tholen, K. 2021 Aeolian sand transport: scaling of mean saltation length and height and implications for mass flux scaling. Aeolian Res. 52, 100730.CrossRefGoogle Scholar
Perry, A.E. & Chong, M.S. 1982 On the mechanism of wall turbulence. J. Fluid Mech. 119, 173217.CrossRefGoogle Scholar
Picano, F., Breugem, W.P. & Brandt, L. 2015 Turbulent channel flow of dense suspensions of neutrally buoyant spheres. J. Fluid Mech. 764, 463487.CrossRefGoogle Scholar
Portela, L.M. & Oliemans, R.V.A. 2003 Eulerian–lagrangian DNS/LES of particle–turbulence interactions in wall-bounded flows. Intl J. Numer. Meth. Fluids 43 (9), 10451065.CrossRefGoogle Scholar
Revil-Baudard, T., Chauchat, J., Hurther, D. & Eiff, O. 2016 Turbulence modifications induced by the bed mobility in intense sediment-laden flows. J. Fluid Mech. 808, 469484.CrossRefGoogle Scholar
Righetti, M. & Romano, G.P. 2004 Particle–fluid interactions in a plane near-wall turbulent flow. J. Fluid Mech. 505, 93121.CrossRefGoogle Scholar
Rohilla, N., Arya, S. & Goswami, P.S. 2023 Effect of channel dimensions and Reynolds numbers on the turbulence modulation for particle-laden turbulent channel flows. Phys. Fluids 35 (5), 053323.CrossRefGoogle Scholar
Scherer, M., Uhlmann, M., Kidanemariam, A.G. & Krayer, M. 2022 On the role of turbulent large-scale streaks in generating sediment ridges. J. Fluid Mech. 930, A11.CrossRefGoogle Scholar
Shao, X., Wu, T. & Yu, Z. 2012 Fully resolved numerical simulation of particle-laden turbulent flow in a horizontal channel at a low Reynolds number. J. Fluid Mech. 693, 319344.CrossRefGoogle Scholar
Sheng, J., Meng, H. & Fox, R.O. 2000 A large eddy PIV method for turbulence dissipation rate estimation. Chem. Engng Sci. 55 (20), 44234434.CrossRefGoogle Scholar
de Silva, C.M., Chandran, D., Baidya, R., Hutchins, N. & Marusic, I. 2020 Periodicity of large-scale coherence in turbulent boundary layers. Intl J. Heat Fluid Flow 83, 108575.CrossRefGoogle Scholar
Smith, C.R. 1984 A synthesized model of the near-wall behavior in turbulent boundary layers. In Proceedings of the 8th Symposium on Turbulence, Missouri, vol. 299, p. 325. University Missouri-Rolla Rolla.Google Scholar
Tay, G.F.K., Kuhn, D.C.S. & Tachie, M.F. 2015 Effects of sedimenting particles on the turbulence structure in a horizontal channel flow. Phys. Fluids 27 (2), 025106.CrossRefGoogle Scholar
Tomkins, C.D. & Adrian, R.J. 2003 Spanwise structure and scale growth in turbulent boundary layers. J. Fluid Mech. 490, 3774.CrossRefGoogle Scholar
Townsend, A.A.R. 1976 The Structure of Turbulent Shear Flow. Cambridge University Press.Google Scholar
Tutkun, M., George, W.K., Delville, J., Stanislas, M., Johansson, P.B.V., Foucaut, J.M. & Coudert, S. 2009 Two-point correlations in high Reynolds number flat plate turbulent boundary layers. J. Turbul. 10 (10), N21.CrossRefGoogle Scholar
Volino, R.J., Schultz, M.P. & Flack, K.A. 2007 Turbulence structure in rough-and smooth-wall boundary layers. J. Fluid Mech. 592, 263293.CrossRefGoogle Scholar
Volino, R.J., Schultz, M.P. & Flack, K.A. 2009 Turbulence structure in a boundary layer with two-dimensional roughness. J. Fluid Mech. 635, 75101.CrossRefGoogle Scholar
Wang, G. & Richter, D.H. 2019 Two mechanisms of modulation of very-large-scale motions by inertial particles in open channel flow. J. Fluid Mech. 868, 538559.CrossRefGoogle Scholar
Wang, L., Pan, C., Wang, J. & Gao, Q. 2022 Statistical signatures of component wall-attached eddies in proper orthogonal decomposition modes of a turbulent boundary layer. J. Fluid Mech. 944, A26.CrossRefGoogle Scholar
Wu, X., Baltzer, J.R. & Adrian, R.J. 2012 Direct numerical simulation of a $30R$ long turbulent pipe flow at $R^+= 685$: large-and very large-scale motions. J. Fluid Mech. 698, 235281.CrossRefGoogle Scholar
Wu, Y. & Christensen, K.T. 2006 Population trends of spanwise vortices in wall turbulence. J. Fluid Mech. 568, 5576.CrossRefGoogle Scholar
Wu, Y. & Christensen, K.T. 2010 Spatial structure of a turbulent boundary layer with irregular surface roughness. J. Fluid Mech. 655, 380418.CrossRefGoogle Scholar
Yang, J.Q., Chung, H. & Nepf, H.M. 2016 The onset of sediment transport in vegetated channels predicted by turbulent kinetic energy. Geophys. Res. Lett. 43 (21), 11261.CrossRefGoogle Scholar
Zhang, W., Wang, Y. & Lee, S.J. 2008 Simultaneous PIV and PTV measurements of wind and sand particle velocities. Exp. Fluids 45 (2), 241256.CrossRefGoogle Scholar
Zhao, L.H., Andersson, H.I. & Gillissen, J.J.J. 2010 Turbulence modulation and drag reduction by spherical particles. Phys. Fluids 22 (8), 081702.CrossRefGoogle Scholar
Zheng, X., Wang, G. & Zhu, W. 2021 Experimental study on the effects of particle–wall interactions on VLSM in sand-laden flows. J. Fluid Mech. 914, A35.CrossRefGoogle Scholar
Zhou, J., Adrian, R.J., Balachandar, S. & Kendall, T.M. 1999 Mechanisms for generating coherent packets of hairpin vortices in channel flow. J. Fluid Mech. 387, 353396.CrossRefGoogle Scholar
Zhu, H., Pan, C., Wang, G., Liang, Y., Ji, X. & Wang, J. 2021 Attached eddy-like particle clustering in a turbulent boundary layer under net sedimentation conditions. J. Fluid Mech. 920, A53.CrossRefGoogle Scholar
Zhu, H., Pan, C., Wang, J., Liang, Y. & Ji, X. 2019 Sand-turbulence interaction in a high-Reynolds-number turbulent boundary layer under net sedimentation conditions. Intl J. Multiphase Flow 119 (1), 5671.CrossRefGoogle Scholar
Supplementary material: File

Feng et al. supplementary movie

The particle trajectories on the erodible wall recorded by the high-speed photography.
Download Feng et al. supplementary movie(File)
File 5.2 MB