Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-05-19T16:54:36.072Z Has data issue: false hasContentIssue false

A new lattice Boltzmann model for liquid–solid phase transition and its application in the simulation of sessile droplet solidification – focusing on volume change

Published online by Cambridge University Press:  03 January 2024

Omid Reza Mohammadipour*
Affiliation:
Mechanical Engineering Department, Payame Noor University (PNU), Tehran 19395-4697, Iran
Xili Duan
Affiliation:
Department of Mechanical Engineering, Memorial University of Newfoundland, St. John's, NL A1B 3X5, Canada
*
Email address for correspondence: o.mohammadipour@pnu.ac.ir

Abstract

This paper introduces a new modification to the convective Cahn–Hilliard equation and a lattice Boltzmann framework to simulate liquid–solid phase transitions in multicomponent systems. The model takes into account changes in properties, such as density, caused by solidification, which leads to volume expansion or contraction. After validating the proposed model against classical problems and experimental data, the solidification of a sessile droplet was investigated in detail. Results of numerical simulations suggest that the environmental conditions are as important as the surface condition in deciding the freezing time and the final shape of the droplet. The environmental properties can also affect the freezing time indirectly through interaction with surface wettability. It has been demonstrated that hydrophobic surfaces may lose their advantages over hydrophilic surfaces in terms of anti-icing performance when primary solidification is initiated from the interface between the droplet and the environment fluid. The deformations of droplets, either with contraction or expansion, were confirmed and compared in different environments. This study offers a new perspective on droplet solidification by exposing the strong influence of environmental conditions and meanwhile provides a useful numerical method to predict the phase change process.

Type
JFM Papers
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexander, F.J., Chen, S. & Sterling, J.D. 1993 Lattice Boltzmann thermohydrodynamics. Phys. Rev. E 47 (4), R2249R2252.CrossRefGoogle ScholarPubMed
Badalassi, V.E., Ceniceros, H.D. & Banerjee, S. 2003 Computation of multiphase systems with phase field models. J. Comput. Phys. 190 (2), 371397.CrossRefGoogle Scholar
Basati, Y., Mohammadipour, O.R. & Niazmand, H. 2021 Design and analysis of an electroosmotic micro-reactor and its application on controlling a chemical reaction. Chem. Engng Process. 164, 108381.CrossRefGoogle Scholar
Benzi, R., Succi, S. & Vergassola, M. 1992 The lattice Boltzmann equation: theory and applications. Phys. Rep. 222 (3), 145197.CrossRefGoogle Scholar
Blake, J.D., Thompson, D.S., Raps, D.M. & Strobl, T. 2014 Simulating the freezing of supercooled water droplets impacting a cooled substrate. AIAA Paper 2014-0928.CrossRefGoogle Scholar
Bodaghkhani, A. & Duan, X. 2020 Water droplet freezing on cold surfaces with distinct wetabilities. Heat Mass Transfer 57 (5), 110.CrossRefGoogle Scholar
Briant, A.J. & Yeomans, J.M. 2004 Lattice Boltzmann simulations of contact line motion. II. Binary fluids. Phys. Rev. E 69 (3), 31603.CrossRefGoogle ScholarPubMed
Cahn, J.W. & Hilliard, J.E. 1958 Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Phys. 28 (2), 258267.CrossRefGoogle Scholar
Chakraborty, S. & Chatterjee, D. 2007 An enthalpy-based hybrid lattice-Boltzmann method for modelling solid–liquid phase transition in the presence of convective transport. J. Fluid Mech. 592, 155175.CrossRefGoogle Scholar
Eshraghi, M. & Felicelli, S.D. 2012 An implicit lattice Boltzmann model for heat conduction with phase change. Intl J. Heat Mass Transfer 55 (9–10), 24202428.CrossRefGoogle Scholar
de Fabritiis, G., Mancini, A., Mansutti, D. & Succi, S. 1998 Mesoscopic models of liquid/solid phase transitions. Intl J. Mod. Phys. C 9 (8), 14051415.CrossRefGoogle Scholar
Feuillebois, F., Lasek, A., Creismeas, P., Pigeonneau, F. & Szaniawski, A. 1995 Freezing of a subcooled liquid droplet. J. Colloid Interface Sci. 169 (1), 90102.CrossRefGoogle Scholar
Gong, J., Hou, J., Yang, L., Wu, W., Li, G. & Gao, T. 2019 Mesoscopic investigation of frost crystal nucleation on cold surface based on the lattice-Boltzmann method. J. Mech. Sci. Technol. 33 (4), 19251935.CrossRefGoogle Scholar
Guo, Z., Zheng, C. & Shi, B. 2002 Discrete lattice effects on the forcing term in the lattice Boltzmann method. Phys. Rev. E 65 (4), 46308.CrossRefGoogle ScholarPubMed
He, X., Chen, S. & Doolen, G.D. 1998 a A novel thermal model for the lattice Boltzmann method in incompressible limit. J. Comput. Phys. 146 (1), 282300.CrossRefGoogle Scholar
He, X., Chen, S. & Zhang, R. 1999 A lattice Boltzmann scheme for incompressible multiphase flow and its application in simulation of Rayleigh–Taylor instability. J. Comput. Phys. 152 (2), 642663.CrossRefGoogle Scholar
He, X. & Doolen, G.D. 2002 Thermodynamic foundations of kinetic theory and lattice Boltzmann models for multiphase flows. J. Stat. Phys. 107 (1/2), 309328.CrossRefGoogle Scholar
He, X., Shan, X. & Doolen, G.D. 1998 b Discrete Boltzmann equation model for nonideal gases. Phys. Rev. E 57 (1), R13R16.CrossRefGoogle Scholar
He, X., Zou, Q., Luo, L.-S. & Dembo, M. 1997 Analytic solutions of simple flows and analysis of nonslip boundary conditions for the lattice Boltzmann BGK model. J. Stat. Phys. 87 (1–2), 115136.CrossRefGoogle Scholar
Higuera, F.J. & Jiménez, J. 1989 Boltzmann approach to lattice gas simulations. Europhys. Lett. 9 (7), 663668.CrossRefGoogle Scholar
Higuera, F.J. & Succi, S. 1989 Simulating the flow around a circular cylinder with a lattice Boltzmann equation. Europhys. Lett. 8 (6), 517521.CrossRefGoogle Scholar
Higuera, F.J., Succi, S. & Benzi, R. 1989 Lattice gas dynamics with enhanced collisions. Europhys. Lett. 9 (4), 345349.CrossRefGoogle Scholar
Holdych, D.J., Rovas, D., Georgiadis, J.G. & Buckius, R.O. 1998 An improved hydrodynamics formulation for multiphase flow lattice-Boltzmann models. Intl J. Mod. Phys. C 9 (8), 13931404.CrossRefGoogle Scholar
Huang, R., Wu, H. & Cheng, P. 2013 A new lattice Boltzmann model for solid–liquid phase change. Intl J. Heat Mass Transfer 59, 295301.CrossRefGoogle Scholar
Huber, C., Parmigiani, A., Chopard, B., Manga, M. & Bachmann, O. 2008 Lattice Boltzmann model for melting with natural convection. Intl J. Heat Fluid Flow 29 (5), 14691480.CrossRefGoogle Scholar
Inamuro, T., Ogata, T., Tajima, S. & Konishi, N. 2004 A lattice Boltzmann method for incompressible two-phase flows with large density differences. J. Comput. Phys. 198 (2), 628644.CrossRefGoogle Scholar
Jiaung, W.-S., Ho, J.-R. & Kuo, C.-P. 2001 Lattice Boltzmann method for the heat conduction problem with phase change. Numer. Heat Transfer 39 (2), 167187.Google Scholar
Jung, S., Tiwari, M.K., Doan, N.V. & Poulikakos, D. 2012 Mechanism of supercooled droplet freezing on surfaces. Nat. Commun. 3 (1), 615.CrossRefGoogle ScholarPubMed
Kendon, V.M., Cates, M.E., Pagonabarraga, I., Desplat, J.-C. & Bladon, P. 2001 Inertial effects in three-dimensional spinodal decomposition of a symmetric binary fluid mixture: a lattice Boltzmann study. J. Fluid Mech. 440, 147203.CrossRefGoogle Scholar
Kusumaatmaja, H. & Yeomans, J.M. 2010 Lattice Boltzmann simulations of wetting and drop dynamics. In Simulating Complex Systems by Cellular Automata (ed. J. Kroc, P.M.A. Sloot & A.G. Hoekstra), pp. 241–274. Springer.CrossRefGoogle Scholar
Kuzmin, A., Januszewski, M., Eskin, D., Mostowfi, F. & Derksen, J.J. 2011 Simulations of gravity-driven flow of binary liquids in microchannels. Chem. Engng J. 171 (2), 646654.CrossRefGoogle Scholar
Lee, T. & Lin, C.-L. 2005 A stable discretization of the lattice Boltzmann equation for simulation of incompressible two-phase flows at high density ratio. J. Comput. Phys. 206 (1), 1647.CrossRefGoogle Scholar
Li, Q., Luo, K.H., Kang, Q.J., He, Y.L., Chen, Q. & Liu, Q. 2016 Lattice Boltzmann methods for multiphase flow and phase-change heat transfer. Prog. Energy Combust. Sci. 52, 62105.CrossRefGoogle Scholar
Li, Q., Luo, K.H., Gao, Y.J. & He, Y.L. 2012 Additional interfacial force in lattice Boltzmann models for incompressible multiphase flows. Phys. Rev. E 85 (2), 26704.CrossRefGoogle ScholarPubMed
Marín, A.G., Enríquez, O.R., Brunet, P., Colinet, P. & Snoeijer, J.H. 2014 Universality of tip singularity formation in freezing water drops. Phys. Rev. Lett. 113 (5), 54301.CrossRefGoogle ScholarPubMed
McNamara, G.R. & Zanetti, G. 1988 Use of the Boltzmann equation to simulate lattice-gas automata. Phys. Rev. Lett. 61 (20), 23322335.CrossRefGoogle ScholarPubMed
Mohammadipoor, O.R., Niazmand, H. & Mirbozorgi, S.A. 2014 Alternative curved-boundary treatment for the lattice Boltzmann method and its application in simulation of flow and potential fields. Phys. Rev. E 89 (1), 13309.CrossRefGoogle ScholarPubMed
Mohammadipour, O.R., Niazmand, H. & Succi, S. 2017 General velocity, pressure, and initial condition for two-dimensional and three-dimensional lattice Boltzmann simulations. Phys. Rev. E 95 (3), 33301.CrossRefGoogle ScholarPubMed
Mohammadipour, O.R., Succi, S. & Niazmand, H. 2018 General curved boundary treatment for two- and three-dimensional stationary and moving walls in flow and nonflow lattice Boltzmann simulations. Phys. Rev. E 98 (2), 23304.CrossRefGoogle ScholarPubMed
Parmigiani, A., Huber, C., Bachmann, O. & Chopard, B. 2011 Pore-scale mass and reactant transport in multiphase porous media flows. J. Fluid Mech. 686, 4076.CrossRefGoogle Scholar
Pérez, J.G., Leclaire, S., Ammar, S., Trépanier, J.-Y., Reggio, M. & Benmeddour, A. 2021 Investigations of water droplet impact and freezing on a cold substrate with the lattice Boltzmann method. Intl J. Thermofluids 12, 100109.Google Scholar
Pooley, C.M., Kusumaatmaja, H. & Yeomans, J.M. 2008 Contact line dynamics in binary lattice Boltzmann simulations. Phys. Rev. E 78 (5), 56709.CrossRefGoogle ScholarPubMed
Qian, Y.H. 1993 Simulating thermohydrodynamics with lattice BGK models. J. Sci. Comput. 8 (3), 231242.CrossRefGoogle Scholar
Rothman, D.H. & Keller, J.M. 1988 Immiscible cellular-automaton fluids. J. Stat. Phys. 52 (3–4), 11191127.CrossRefGoogle Scholar
Sayyari, M.J., Kharmiani, S.F. & Esfahani, J.A. 2019 A lattice Boltzmann study on dripping process during 2D droplet impact onto a wetted rotating cylinder. J. Mol. Liq. 275, 409420.CrossRefGoogle Scholar
Sbragaglia, M., Benzi, R., Biferale, L., Succi, S., Sugiyama, K. & Toschi, F. 2007 Generalized lattice Boltzmann method with multirange pseudopotential. Phys. Rev. E 75 (2), 26702.CrossRefGoogle ScholarPubMed
Schetnikov, A., Matiunin, V. & Chernov, V. 2015 Conical shape of frozen water droplets. Am. J. Phys. 83 (1), 3638.CrossRefGoogle Scholar
Schultz, W.W., Worster, M.G. & Anderson, D.M. 2001 Solidifying sessile water droplets. In Interactive Dynamics of Convection and Solidification (ed. P. Ehrhard, D.S. Riley & P.H. Steen), pp. 209–226. Springer.CrossRefGoogle Scholar
Semma, E., El Ganaoui, M., Bennacer, R. & Mohamad, A.A. 2008 Investigation of flows in solidification by using the lattice Boltzmann method. Intl J. Therm. Sci. 47 (3), 201208.CrossRefGoogle Scholar
Shan, X. & Chen, H. 1993 Lattice Boltzmann model for simulating flows with multiple phases and components. Phys. Rev. E 47 (3), 18151819.CrossRefGoogle ScholarPubMed
Shao, J.Y., Shu, C., Huang, H.B. & Chew, Y.T. 2014 Free-energy-based lattice Boltzmann model for the simulation of multiphase flows with density contrast. Phys. Rev. E 89 (3), 33309.CrossRefGoogle ScholarPubMed
Shi, B. & Guo, Z. 2009 Lattice Boltzmann model for nonlinear convection-diffusion equations. Phys. Rev. E 79 (1), 016701.CrossRefGoogle ScholarPubMed
Shi, K. & Duan, X. 2022 Freezing delay of water droplets on metallic hydrophobic surfaces in a cold environment. Appl. Therm. Engng 216, 119131.CrossRefGoogle Scholar
Succi, S. 2015 Lattice Boltzmann 2038. Europhys. Lett. 109 (5), 50001.CrossRefGoogle Scholar
Sun, J., Gong, J. & Li, G. 2015 A lattice Boltzmann model for solidification of water droplet on cold flat plate. Intl J. Refrig. 59, 5364.CrossRefGoogle Scholar
Swift, M.R., Osborn, W.R. & Yeomans, J.M. 1995 Lattice Boltzmann simulation of nonideal fluids. Phys. Rev. Lett. 75 (5), 830833.CrossRefGoogle ScholarPubMed
Tabakova, S. & Feuillebois, F. 2004 On the solidification of a supercooled liquid droplet lying on a surface. J. Colloid Interface Sci. 272 (1), 225234.CrossRefGoogle ScholarPubMed
Tang, G.H., Li, Z., Wang, J.K., He, Y.L. & Tao, W.Q. 2006 Electroosmotic flow and mixing in microchannels with the lattice Boltzmann method. J. Appl. Phys. 100 (9), 94908.CrossRefGoogle Scholar
Vu, T.V. 2018 Fully resolved simulations of drop solidification under forced convection. Intl J. Heat Mass Transfer 122, 252263.CrossRefGoogle Scholar
Wang, J., Wang, M. & Li, Z. 2006 Lattice Poisson–Boltzmann simulations of electro-osmotic flows in microchannels. J. Colloid Interface Sci. 296 (2), 729736.CrossRefGoogle ScholarPubMed
Watanabe, T., Kuribayashi, I., Honda, T. & Kanzawa, A. 1992 Deformation and solidification of a droplet on a cold substrate. Chem. Engng Sci. 47 (12), 30593065.CrossRefGoogle Scholar
Xiong, W. & Cheng, P. 2018 a Mesoscale simulation of a molten droplet impacting and solidifying on a cold rough substrate. Intl Commun. Heat Mass Transfer 98, 248257.CrossRefGoogle Scholar
Xiong, W. & Cheng, P. 2018 b Numerical investigation of air entrapment in a molten droplet impacting and solidifying on a cold smooth substrate by 3D lattice Boltzmann method. Intl J. Heat Mass Transfer 124, 12621274.CrossRefGoogle Scholar
Yu, D., Mei, R., Luo, L.-S. & Shyy, W. 2003 Viscous flow computations with the method of lattice Boltzmann equation. Prog. Aerosp. Sci. 39 (5), 329367.CrossRefGoogle Scholar
Zhang, C., Zhang, H., Fang, W., Zhao, Y. & Yang, C. 2020 Axisymmetric lattice Boltzmann model for simulating the freezing process of a sessile water droplet with volume change. Phys. Rev. E 101 (2), 23314.CrossRefGoogle ScholarPubMed
Zhang, X., Liu, X., Wu, X. & Min, J. 2018 Simulation and experiment on supercooled sessile water droplet freezing with special attention to supercooling and volume expansion effects. Intl J. Heat Mass Transfer 127, 975985.CrossRefGoogle Scholar
Zhang, X., Wu, X. & Min, J. 2017 a Freezing and melting of a sessile water droplet on a horizontal cold plate. Exp. Therm. Fluid Sci. 88, 17.CrossRefGoogle Scholar
Zhang, X., Wu, X., Min, J. & Liu, X. 2017 b Modelling of sessile water droplet shape evolution during freezing with consideration of supercooling effect. Appl. Therm. Engng 125, 644651.CrossRefGoogle Scholar
Zhao, X., Dong, B., Li, W. & Dou, B. 2017 An improved enthalpy-based lattice Boltzmann model for heat and mass transfer of the freezing process. Appl. Therm. Engng 111, 14771486.CrossRefGoogle Scholar
Zheng, H.W., Shu, C. & Chew, Y.T. 2006 A lattice Boltzmann model for multiphase flows with large density ratio. J. Comput. Phys. 218 (1), 353371.CrossRefGoogle Scholar