Hostname: page-component-848d4c4894-4hhp2 Total loading time: 0 Render date: 2024-05-15T10:45:09.933Z Has data issue: false hasContentIssue false

The production of uncertainty in three-dimensional Navier–Stokes turbulence

Published online by Cambridge University Press:  13 December 2023

Jin Ge*
Affiliation:
Univ. Lille, CNRS, ONERA, Arts et Métiers ParisTech, Centrale Lille, UMR 9014 – LMFL – Laboratoire de Mécanique des Fluides de Lille – Kampé de Feriet, F-59000 Lille, France
Joran Rolland*
Affiliation:
Univ. Lille, CNRS, ONERA, Arts et Métiers ParisTech, Centrale Lille, UMR 9014 – LMFL – Laboratoire de Mécanique des Fluides de Lille – Kampé de Feriet, F-59000 Lille, France
John Christos Vassilicos*
Affiliation:
Univ. Lille, CNRS, ONERA, Arts et Métiers ParisTech, Centrale Lille, UMR 9014 – LMFL – Laboratoire de Mécanique des Fluides de Lille – Kampé de Feriet, F-59000 Lille, France

Abstract

We derive the evolution equation of the average uncertainty energy for periodic/homogeneous incompressible Navier–Stokes turbulence and show that uncertainty is increased by strain rate compression and decreased by strain rate stretching. We use three different direct numerical simulations (DNS) of non-decaying periodic turbulence and identify a similarity regime where (a) the production and dissipation rates of uncertainty grow together in time, (b) the parts of the uncertainty production rate accountable to average strain rate properties on the one hand and fluctuating strain rate properties on the other also grow together in time, (c) the average uncertainty energies along the three different strain rate principal axes remain constant as a ratio of the total average uncertainty energy, (d) the uncertainty energy spectrum's evolution is self-similar if normalised by the uncertainty's average uncertainty energy and characteristic length and (e) the uncertainty production rate is extremely intermittent and skewed towards extreme compression events even though the most likely uncertainty production rate is zero. Properties (a), (b) and (c) imply that the average uncertainty energy grows exponentially in this similarity time range. The Lyapunov exponent depends on both the Kolmogorov time scale and the smallest Eulerian time scale, indicating a dependence on random large-scale sweeping of dissipative eddies. In the two DNS cases of statistically stationary turbulence, this exponential growth is followed by an exponential of exponential growth, which is, in turn, followed by a linear growth in the one DNS case where the Navier–Stokes forcing also produces uncertainty.

Type
JFM Papers
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ashurst, W.T., Kerstein, A.R., Kerr, R.M. & Gibson, C.H. 1987 Alignment of vorticity and scalar gradient with strain rate in simulated Navier–Stokes turbulence. Phys. Fluids 30 (8), 23432353.CrossRefGoogle Scholar
Aurell, E., Boffetta, G., Crisanti, A., Paladin, G. & Vulpiani, A. 1997 Predictability in the large: an extension of the concept of Lyapunov exponent. J. Phys. A: Math. Theor. 30 (1), 1.CrossRefGoogle Scholar
Batchelor, G.K. 1953 The Theory of Homogeneous Turbulence. Cambridge University Press.Google Scholar
Berera, A. & Ho, R.D.J.G. 2018 Chaotic properties of a turbulent isotropic fluid. Phys. Rev. Lett. 120 (2), 024101.CrossRefGoogle ScholarPubMed
Betchov, R. 1956 An inequality concerning the production of vorticity in isotropic turbulence. J. Fluid Mech. 1 (5), 497504.CrossRefGoogle Scholar
Boffetta, G., Celani, A., Crisanti, A. & Vulpiani, A. 1997 Predictability in two-dimensional decaying turbulence. Phys. Fluids 9 (3), 724734.CrossRefGoogle Scholar
Boffetta, G. & Musacchio, S. 2017 Chaos and predictability of homogeneous-isotropic turbulence. Phys. Rev. Lett. 119 (5), 054102.CrossRefGoogle ScholarPubMed
Cheung, P.Y. & Wong, A.Y. 1987 Chaotic behavior and period doubling in plasmas. Phys. Rev. Lett. 59 (5), 551554.CrossRefGoogle ScholarPubMed
Clark, D., Armua, A., Freeman, C., Brener, D.J. & Berera, A. 2021 Chaotic measure of the transition between two-and three-dimensional turbulence. Phys. Rev. Fluids 6 (5), 054612.CrossRefGoogle Scholar
Clark, D., Armua, A., Ho, R.D.J.G. & Berera, A. 2022 Critical transition to a non-chaotic regime in isotropic turbulence. J. Fluid Mech. 930, A17.CrossRefGoogle Scholar
Crisanti, A., Jensen, M.H., Vulpiani, A. & Paladin, G. 1993 Intermittency and predictability in turbulence. Phys. Rev. Lett. 70 (2), 166169.CrossRefGoogle ScholarPubMed
Deissler, R.G. 1986 Is Navier–Stokes turbulence chaotic? Phys. Fluids 29 (5), 14531457.CrossRefGoogle Scholar
Frisch, U. 1995 Turbulence: The Legacy of AN Kolmogorov. Cambridge University Press.CrossRefGoogle Scholar
Goto, S. & Vassilicos, J.C. 2009 The dissipation rate coefficient of turbulence is not universal and depends on the internal stagnation point structure. Phys. Fluids 21 (3), 035104.CrossRefGoogle Scholar
Ho, R.D.J.G., Armua, A. & Berera, A. 2020 Fluctuations of Lyapunov exponents in homogeneous and isotropic turbulence. Phys. Rev. Fluids 5 (2), 024602.CrossRefGoogle Scholar
Leith, C.E. 1971 Atmospheric predictability and two-dimensional turbulence. J. Atmos. Sci. 28 (2), 145161.2.0.CO;2>CrossRefGoogle Scholar
Leith, C.E. & Kraichnan, R.H. 1972 Predictability of turbulent flows. J. Atmos. Sci. 29 (6), 10411058.2.0.CO;2>CrossRefGoogle Scholar
Li, Y.C. 2014 The distinction of turbulence from chaos – rough dependence on initial data. Electron. J. Differ. Equ. 2014 (104), 18.Google Scholar
Li, Y.C., Ho, R.D.J.G., Berera, A. & Feng, Z.C. 2020 Superfast amplification and superfast nonlinear saturation of perturbations as a mechanism of turbulence. J. Fluid Mech. 904, A27.CrossRefGoogle Scholar
Lorenz, E.N. 1963 Deterministic nonperiodic flow. J. Atmos. Sci. 20 (2), 130141.2.0.CO;2>CrossRefGoogle Scholar
Lorenz, E.N. 1969 The predictability of a flow which possesses many scales of motion. Tellus 21 (3), 289307.CrossRefGoogle Scholar
Mohan, P., Fitzsimmons, N. & Moser, R.D. 2017 Scaling of Lyapunov exponents in homogeneous isotropic turbulence. Phys. Rev. Fluids 2 (11), 114606.CrossRefGoogle Scholar
Paul, I., Papadakis, G. & Vassilicos, J.C. 2017 Genesis and evolution of velocity gradients in near-field spatially developing turbulence. J. Fluid Mech. 815, 295332.CrossRefGoogle Scholar
Ruelle, D. 1979 Microscopic fluctuations and turbulence. Phys. lett. A 72 (2), 8182.CrossRefGoogle Scholar
Ruelle, D. 1981 Small random perturbations of dynamical systems and the definition of attractors. Commun. Math. Phys. 82, 137151.CrossRefGoogle Scholar
Sparrow, C. 2012 The Lorenz Equations: Bifurcations, Chaos, and Strange Attractors, vol. 41. Springer Science & Business Media.Google Scholar
Tennekes, H. 1975 Eulerian and Lagrangian time microscales in isotropic turbulence. J. Fluid Mech. 67 (3), 561567.CrossRefGoogle Scholar
Tennekes, H. & Lumley, J.L. 1972 A First Course in Turbulence. MIT.CrossRefGoogle Scholar
Vincent, A. & Meneguzzi, M. 1991 The spatial structure and statistical properties of homogeneous turbulence. J. Fluid Mech. 225, 120.CrossRefGoogle Scholar
Yoffe, S.R. 2012 Investigation of the transfer and dissipation of energy in isotropic turbulence. PhD thesis, University of Edinburgh.Google Scholar