Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-05-20T06:40:58.632Z Has data issue: false hasContentIssue false

Propagation instabilities of the oblique detonation wave in partially prevaporized n-heptane sprays

Published online by Cambridge University Press:  01 April 2024

Cheng Tian
Affiliation:
School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, PR China
Honghui Teng
Affiliation:
School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, PR China Chongqing Innovation Center, Beijing Institute of Technology, Chongqing 401120, PR China Advanced Jet Propulsion Innovation Center, Aero Engine Academy of China, Beijing 101300, PR China
Baolu Shi
Affiliation:
School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, PR China Chongqing Innovation Center, Beijing Institute of Technology, Chongqing 401120, PR China
Pengfei Yang
Affiliation:
SKLTCS, CAPT, Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, PR China
Kuanliang Wang
Affiliation:
School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, PR China
Majie Zhao*
Affiliation:
School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, PR China Chongqing Innovation Center, Beijing Institute of Technology, Chongqing 401120, PR China
*
Email address for correspondence: zhaomj@bit.edu.cn

Abstract

Two-dimensional oblique detonation wave (ODW) propagations in partially prevaporized n-heptane sprays are numerically simulated with a skeletal chemical mechanism. The influences of the droplet diameter and total equivalence on oblique detonation are considered. The initiation length is found to increase first and then decrease with increasing initial droplet diameter, and the effect of droplet size is maximized when the initial droplet diameter is approximately $10\ \mathrm {\mu } {\rm m}$. As the initial droplet diameter varies, unsteady and steady ODWs are observed. In the cases of unsteady ODWs, temperature gradients and non-uniform distributions of the reactant mixture due to droplet evaporation lead to formation of unsteady detonation propagation, therefore leading to fluctuations in the initiation length. The fluctuations in initiation length decrease as the pre-evaporation gas equivalence ratio increases for the unsteady cases. The results further suggest that the relationship between the evaporation layer thickness along the streamline and the corresponding theoretical initiation length can be used to identify an unsteady or steady ODW in cases with large droplets that evaporate behind an oblique shock wave or ODW under the effects of different initial droplet diameters.

Type
JFM Papers
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abramzon, B. & Sirignano, W.A. 1989 Droplet vaporization model for spray combustion calculations. Intl J. Heat Mass Transfer 32 (9), 16051618.CrossRefGoogle Scholar
Avdonin, A., Meindl, M. & Polifke, W. 2019 Thermoacoustic analysis of a laminar premixed flame using a linearized reactive flow solver. Proc. Combust. Inst. 37 (4), 53075314.CrossRefGoogle Scholar
Bachman, C.L. & Goodwin, G.B. 2021 Ignition criteria and the effect of boundary layers on wedge-stabilized oblique detonation waves. Combust. Flame 223, 271283.CrossRefGoogle Scholar
Bian, J., Zhou, L. & Teng, H. 2021 Structural and thermal analysis on oblique detonation influenced by different forebody compressions in hydrogen-air mixtures. Fuel 286, 119458.CrossRefGoogle Scholar
Chauvin, A., Daniel, E., Chinnayya, A., Massoni, J. & Jourdan, G. 2016 Shock waves in sprays: numerical study of secondary atomization and experimental comparison. Shock Waves 26, 403415.CrossRefGoogle Scholar
Craig, L., Moharreri, A., Schanot, A., Rogers, D.C., Anderson, B. & Dhaniyala, S. 2013 Characterizations of cloud droplet shatter artifacts in two airborne aerosol inlets. Aerosol Sci. Technol. 47, 662671.CrossRefGoogle Scholar
Crowe, C., Sommerfeld, M. & Tsuji, Y. 1998 Multiphase Flows with Droplets and Particles. CRC.Google Scholar
Crowe, C.T., Sharma, M.P. & Stock, D.E. 1977 The particle-source-in cell (PSI-CELL) model for gas-droplet flows. Trans. ASME J. Fluids Engng 99, 325332.CrossRefGoogle Scholar
Dai, P., Chen, Z., Chen, S. & Ju, Y. 2015 Numerical experiments on reaction front propagation in n-heptane/air mixture with temperature gradient. Proc. Combust. Inst. 35 (3), 30453052.CrossRefGoogle Scholar
Daubert, T.E. & Danner, R.P. 1985 Data Compilation Tables of Properties of Pure Compounds. American Institute of Chemical Engineers.Google Scholar
Domínguez-González, A., Martínez-Ruiz, D., Scotzniovsky, L., Sanchez, A.L. & Williams, F.A. 2022 Wedge-induced oblique detonations with small heat release. AIAA J. 60 (1), 411422.Google Scholar
Dudebout, R., Sislian, J.P. & Oppitz, R. 1998 Numerical simulation of hypersonic shock-induced combustion ramjets. J. Propul. Power 14 (6), 869879.CrossRefGoogle Scholar
Fang, Y., Zhang, Z. & Hu, Z. 2019 Effects of boundary layer on wedge-induced oblique detonation structures in hydrogen-air mixtures. Intl J. Hydrogen Energy 44 (41), 2342923435.CrossRefGoogle Scholar
Fuller, E.N., Schettler, P.D. & Giddings, J.C. 1966 New method for prediction of binary gas-phase diffusion coefficients. Ind. Engng Chem. 58 (5), 1827.CrossRefGoogle Scholar
Guo, H., Xu, Y., Li, S. & Zhang, H. 2022 On the evolutions of induction zone structure in wedge-stabilized oblique detonation with water mist flows. Combust. Flame 241, 112122.CrossRefGoogle Scholar
Hayashi, A.K., Tsuboi, N. & Dzieminska, E. 2020 Numerical study on JP-10/air detonation and rotating detonation engine. AIAA J. 58 (12), 50785094.CrossRefGoogle Scholar
Huang, Z., Zhao, M., Xu, Y., Li, G. & Zhang, H. 2021 Eulerian-Lagrangian modelling of detonative combustion in two-phase gas-droplet mixtures with OpenFOAM: validations and verifications. Fuel 286, 119402.CrossRefGoogle Scholar
Jasak, H. 1996 Error analysis and estimation for the finite volume method with applications to fluid flows. PhD thesis, Imperial College London (University of London).Google Scholar
Jiang, Z., Zhang, Z., Liu, Y., Wang, C. & Luo, C. 2021 Criteria for hypersonic airbreathing propulsion and its experimental verification. Chinese J. Aeronaut. 34 (3), 94104.CrossRefGoogle Scholar
Jourdaine, N., Tsuboi, N. & Hayashi, A.K. 2022 Investigation of liquid n-heptane/air spray detonation with an Eulerian–Eulerian model. Combust. Flame 244, 112278.CrossRefGoogle Scholar
Kurganov, A., Noelle, S. & Petrova, G. 2001 Semidiscrete central-upwind schemes for hyperbolic conservation laws and Hamilton–Jacobi equations. SIAM J. Sci. Comput. 23 (3), 707740.CrossRefGoogle Scholar
Law, C.K. 2010 Combustion Physics. Cambridge University Press.Google Scholar
Li, C., Kailasanath, K. & Oran, E. 1993 Effects of boundary layers on oblique-detonation structures. AIAA Paper 1993-0450.CrossRefGoogle Scholar
Liu, A.B., Mather, D. & Reitz, R.D. 1993 Modeling the effects of drop drag and breakup on fuel sprays. SAE Tech. Pap. Ser. pp. 83–95.CrossRefGoogle Scholar
Liu, S., Hewson, J.C., Chen, J.H. & Pitsch, H. 2004 Effects of strain rate on high-pressure nonpremixed n-heptane autoignition in counterflow. Combust. Flame 137 (3), 320339.CrossRefGoogle Scholar
Maragkos, G., Beji, T. & Merci, B. 2017 Advances in modelling in CFD simulations of turbulent gaseous pool fires. Combust. Flame 181, 2238.CrossRefGoogle Scholar
Marshall, W.R. & Ranz, W.E. 1952 Evaporation from drops–Part I. Chem. Engng Prog. 48 (3), 141146.Google Scholar
Martínez-Ruiz, D., Huete, C., Sánchez, A.L. & Williams, F.A. 2020 Theory of weakly exothermic oblique detonations. AIAA J. 58 (1), 236242.CrossRefGoogle Scholar
McBride, B.J. 1993 Coefficients for calculating thermodynamic and transport properties of individual species. NASA Tech. Memo. 4513.Google Scholar
Meng, Q., Zhao, M., Xu, Y., Zhang, L. & Zhang, H. 2023 Structure and dynamics of spray detonation in n-heptane droplet/vapor/air mixtures. Combust. Flame 249, 112603.CrossRefGoogle Scholar
Naumann, Z. & Schiller, L. 1935 A drag coefficient correlation. Z. Verein. Deutsch. Ing. 77 (318), e323.Google Scholar
Perry, R.H. & Green, D.W. 2007 Perry's Chemical Engineer's Handbook, 8th edn. McGraw-Hill Professional.Google Scholar
Pilch, M. & Erdman, C.A. 1987 Use of breakup time data and velocity history data to predict the maximum size of stable fragments for acceleration-induced breakup of a liquid drop. Intl J. Multiphase Flow 13, 741757.CrossRefGoogle Scholar
Poling, B.E., Prausnitz, J.M. & O'Connell, J.P. 2001 The Properties of Gases and Liquids. McGraw-Hill.Google Scholar
Qi, C., Dai, P., Yu, H. & Chen, Z. 2017 Different modes of reaction front propagation in n-heptane/air mixture with concentration non-uniformity. Proc. Combust. Inst. 36 (3), 36333641.CrossRefGoogle Scholar
Ren, Z., Wang, B., Xiang, G. & Zheng, L. 2018 Effect of the multiphase composition in a premixed fuel–air stream on wedge-induced oblique detonation stabilisation. J. Fluid Mech. 846, 411427.CrossRefGoogle Scholar
Ren, Z., Wang, B., Xiang, G. & Zheng, L. 2019 Numerical analysis of wedge-induced oblique detonations in two-phase kerosene–air mixtures. Proc. Combust. Inst. 37 (3), 36273635.CrossRefGoogle Scholar
Ren, Z. & Zheng, L. 2021 Numerical study on rotating detonation stability in two-phase kerosene-air mixture. Combust. Flame 231, 111484.CrossRefGoogle Scholar
Rosato, D.A., Thornton, M., Sosa, J., Bachman, C., Goodwin, G.B. & Ahmed, K.A. 2021 Stabilized detonation for hypersonic propulsion. Proc. Natl Acad. Sci. USA 118 (20), e2102244118.CrossRefGoogle ScholarPubMed
Shi, J., Xu, Y., Ren, W. & Zhang, H. 2022 Critical condition and transient evolution of methane detonation extinction by fine water droplet curtains. Fuel 315, 123133.CrossRefGoogle Scholar
Sislian, J.P., Schirmer, H., Dudebout, R. & Schumacher, J. 2001 Propulsive performance of hypersonic oblique detonation wave and shock-induced combustion ramjets. J. Propul. Power 17 (3), 599604.CrossRefGoogle Scholar
Sontheimer, L., Kronenburg, A. & Stein, O.T. 2021 Grid dependence of evaporation rates in Euler–Lagrange simulations of dilute sprays. Combust. Flame 232, 111515.CrossRefGoogle Scholar
Teng, H., Bian, J., Zhou, L. & Zhang, Y. 2021 a A numerical investigation of oblique detonation waves in hydrogen-air mixtures at low Mach numbers. Intl J. Hydrogen Energy 46 (18), 1098410994.CrossRefGoogle Scholar
Teng, H., Ng, H.D. & Jiang, Z. 2017 Initiation characteristics of wedge-induced oblique detonation waves in a stoichiometric hydrogen-air mixture. Proc. Combust. Inst. 36 (2), 27352742.CrossRefGoogle Scholar
Teng, H., Tian, C., Zhang, Y., Zhou, L. & Ng, H.D. 2021 b Morphology of oblique detonation waves in a stoichiometric hydrogen–air mixture. J. Fluid Mech. 913, A1.CrossRefGoogle Scholar
Watanabe, H., Matsuo, A., Chinnayya, A., Matsuoka, K., Kawasaki, A. & Kasahara, J. 2020 Numerical analysis of the mean structure of gaseous detonation with dilute water spray. J. Fluid Mech. 887, A4.CrossRefGoogle Scholar
Watanabe, H., Matsuo, A., Chinnayya, A., Matsuoka, K., Kawasaki, A. & Kasahara, J. 2021 Numerical analysis on behavior of dilute water droplets in detonation. Proc. Combust. Inst. 38, 37093716.CrossRefGoogle Scholar
Watanabe, H., Matsuo, A. & Matsuoka, K. 2019 Numerical investigation on propagation behavior of gaseous detonation in water spray. Proc. Combust. Inst. 37 (3), 36173626.CrossRefGoogle Scholar
Wolański, P. 2013 Detonative propulsion. Proc. Combust. Inst. 34 (1), 125158.CrossRefGoogle Scholar
Xu, Y. & Zhang, H. 2022 Interactions between a propagating detonation wave and water spray cloud in hydrogen/air mixture. Combust. Flame 245, 112369.CrossRefGoogle Scholar
Yang, P., Ng, H.D. & Teng, H. 2019 Numerical study of wedge-induced oblique detonations in unsteady flow. J. Fluid Mech. 876, 264287.CrossRefGoogle Scholar
Zhang, Y., Fang, Y., Ng, H.D. & Teng, H. 2019 Numerical investigation on the initiation of oblique detonation waves in stoichiometric acetylene–oxygen mixtures with high argon dilution. Combust. Flame 204, 391396.CrossRefGoogle Scholar
Zhao, M., Chen, Z.X., Zhang, H. & Swaminathan, N. 2021 a Large eddy simulation of a supersonic lifted hydrogen flame with perfectly stirred reactor model. Combust. Flame 230, 111441.CrossRefGoogle Scholar
Zhao, M., Cleary, M.J. & Zhang, H. 2021 b Combustion mode and wave multiplicity in rotating detonative combustion with separate reactant injection. Combust. Flame 225, 291304.CrossRefGoogle Scholar
Zhao, M., Li, J.M., Teo, C.J., Khoo, B.C. & Zhang, H. 2020 Effects of variable total pressures on instability and extinction of rotating detonation combustion. Flow Turbul. Combust. 104 (1), 261290.CrossRefGoogle Scholar
Zhao, M., Ren, Z. & Zhang, H. 2021 c Pulsating detonative combustion in n-heptane/air mixtures under off-stoichiometric conditions. Combust. Flame 226, 285301.CrossRefGoogle Scholar
Zhao, M. & Zhang, H. 2021 Rotating detonative combustion in partially prevaporized dilute n-heptane sprays: droplet size and equivalence ratio effects. Fuel 304, 121481.CrossRefGoogle Scholar
Supplementary material: File

Tian et al. supplementary movie 1

D20um_HRR
Download Tian et al. supplementary movie 1(File)
File 1.5 MB
Supplementary material: File

Tian et al. supplementary movie 2

D20um_Temperature
Download Tian et al. supplementary movie 2(File)
File 1.8 MB
Supplementary material: File

Tian et al. supplementary movie 3

D30um_HRR
Download Tian et al. supplementary movie 3(File)
File 1.4 MB
Supplementary material: File

Tian et al. supplementary movie 4

D30um_Temperature
Download Tian et al. supplementary movie 4(File)
File 1.4 MB