Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-05-31T11:45:05.280Z Has data issue: false hasContentIssue false

Regimes in rotating Rayleigh–Bénard convection over rough boundaries

Published online by Cambridge University Press:  04 March 2024

Vinay Kumar Tripathi
Affiliation:
Fluid and Thermal Systems Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
Pranav Joshi*
Affiliation:
Fluid and Thermal Systems Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
*
Email address for correspondence: jpranavr@iitk.ac.in

Abstract

The present work focuses on the effect of rough horizontal boundaries on the heat transfer in rotating Rayleigh–Bénard convection. We measure the non-dimensional heat transfer, the Nusselt number $Nu$, for various strengths of the buoyancy forcing characterized by the Rayleigh number $Ra$ (${10^5}\mathrm{\ \mathbin{\lower.3ex\hbox{$\buildrel< \over {\smash{\scriptstyle\sim}\vphantom{_x}}$}}\ }Ra\mathrm{\ \mathbin{\lower.3ex\hbox{$\buildrel< \over {\smash{\scriptstyle\sim}\vphantom{_x}}$}}\ }5 \times {10^8}$), and rotation rates characterized by the Ekman number E ($1.4 \times {10^{ - 5}}\mathrm{\ \mathbin{\lower.3ex\hbox{$\buildrel< \over {\smash{\scriptstyle\sim}\vphantom{_x}}$}}\ }E\mathrm{\ \mathbin{\lower.3ex\hbox{$\buildrel< \over {\smash{\scriptstyle\sim}\vphantom{_x}}$}}\ }7.6 \times {10^{ - 4}}$) for aspect ratios $\varGamma \approx 1$, $2.8$ and $6.7$. Similar to rotating convection with smooth horizontal boundaries, the so-called rotationally constrained (RC), rotation-affected (RA) and rotation-unaffected (RuA) regimes of heat transfer seem to persist for rough horizontal boundaries. However, the transition from the RC regime to RA regime occurs at a lower Rayleigh number for rough boundaries. For all experiments with rough boundaries in this study, the thermal and Ekman boundary layers are in a perturbed state, leading to a significant enhancement in the heat transfer as compared with that for smooth walls. However, the enhancement in heat transfer due to wall roughness is observed to attain a maximum in the RC regime. We perform companion direct numerical simulations of rotating convection over smooth walls to suggest a phenomenology explaining this observation. We propose that the heat transfer enhancement due to wall roughness reaches a maximum when the strength and coherence of the columnar structures are both significant, which enables efficient vertical transport of the additional thermal anomalies generated by the roughness at the top and bottom walls.

Type
JFM Papers
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acton. 1966 Analysis of Straight-Line Data. John Wiley & Sons.Google Scholar
Ahlers, G. & Xu, X. 2001 Prandtl-number dependence of heat transport in turbulent Rayleigh–Bénard convection. Phys. Rev. Lett. 86, 3320.Google Scholar
Anas, M. & Joshi, P. 2023 Critical Prandtl number for heat transfer enhancement in rotating convection. arXiv:2307.12525.CrossRefGoogle Scholar
Assenheimer, M. & Steinberg, V. 1996 Observation of coexisting upflow and downflow hexagons in Boussinesq Rayleigh–Bénard convection. Phys. Rev. Lett. 76 (5), 756759.CrossRefGoogle ScholarPubMed
Aurnou, J.M., Calkins, M.A., Cheng, J.S., Julien, K., King, E.M., Nieves, D., Soderlund, K.M. & Stellmach, S. 2015 Rotating convective turbulence in earth and planetary cores. Phys. Earth Planet. Inter. 246, 5271.CrossRefGoogle Scholar
Bloxham, J. & Gubbins, D. 1987 Thermal core–mantle interactions. Nature 325 (6104), 511–113.CrossRefGoogle Scholar
Bodenschatz, E., Pesch, W. & Ahlers, G. 2000 Recent developments in Rayleigh–Bénard convection. Annu. Rev. Fluid Mech. 32 (1), 709778.CrossRefGoogle Scholar
Chandrasekhar, S. 1961 Hydrodynamic and Hydromagnetic Stability. Dover.Google Scholar
Charlson, G.S. & Sani, R.L. 1975 Finite amplitude axisymmetric thermoconvective flows in a bounded cylindrical layer of fluid. J. Fluid Mech. 71 (2), 209229.CrossRefGoogle Scholar
Cheng, J.S., Aurnou, J.M., Julien, K. & Kunnen, R.P.J. 2018 A heuristic framework for next-generation models of geostrophic convective turbulence. Geophys. Astrophys. Fluid Dyn. 112 (4), 277300.CrossRefGoogle Scholar
Cheng, J.S., Madonia, M., Aguirre Guzmán, A.J. & Kunnen, R.P.J. 2020 Laboratory exploration of heat transfer regimes in rapidly rotating turbulent convection. Phys. Rev. Fluids 5 (11), 113501.CrossRefGoogle Scholar
Cheng, J.S., Stellmach, S., Ribeiro, A., Grannan, A., King, E.M. & Aurnou, J.M. 2015 Laboratory-numerical models of rapidly rotating convection in planetary cores. Geophys. J. Intl 201 (1), 117.CrossRefGoogle Scholar
Chilla, F., Ciliberto, S., Innocenti, C. & Pampaloni, E. 1993 Boundary layer and scaling properties in turbulent thermal convection. Il Nuovo Cimento D 15, 12291249.CrossRefGoogle Scholar
Cioni, S., Ciliberto, S. & Sommeria, J. 1997 Strongly turbulent Rayleigh–Bénard convection in mercury: comparison with results at moderate Prandtl number. J. Fluid Mech. 335, 111140.CrossRefGoogle Scholar
De Wit, X.M., Boot, W.J.M., Madonia, M., Aguirre Guzmán, A.J. & Kunnen, R.P.J. 2023 Robust wall modes and their interplay with bulk turbulence in confined rotating Rayleigh–Bénard convection. Phys. Rev. Fluids 8 (7), 073501.CrossRefGoogle Scholar
Dong, D.-L., Wang, B.-F., Dong, Y.-H., Huang, Y.-X., Jiang, N., Liu, Y.-L., Lu, Z.-M., Qiu, X., Tang, Z.-Q. & Zhou, Q. 2020 Influence of spatial arrangements of roughness elements on turbulent Rayleigh–Bénard convection. Phys. Fluids 32 (4), 045114.CrossRefGoogle Scholar
Du, Y.B. & Tong, P. 1998 Enhanced heat transport in turbulent convection over a rough surface. Phys. Rev. Lett. 81 (5), 987990.CrossRefGoogle Scholar
Ecke, R.E. 2023 Rotating Rayleigh–Bénard convection: bits and pieces. Physica D: Nonlinear Phenom. 444, 133579.CrossRefGoogle Scholar
Ecke, R.E. & Shishkina, O. 2023 Turbulent rotating Rayleigh–Bénard convection. Annu. Rev. Fluid Mech. 55 (1), 603638.CrossRefGoogle Scholar
Ecke, R.E., Zhang, X. & Shishkina, O. 2022 Connecting wall modes and boundary zonal flows in rotating Rayleigh–Bénard convection. Phys. Rev. Fluids 7 (1), L011501.CrossRefGoogle Scholar
Favier, B. & Knobloch, E. 2020 Robust wall states in rapidly rotating Rayleigh–Bénard convection. J. Fluid Mech. 895, R1.CrossRefGoogle Scholar
Funfschilling, D., Brown, E., Nikolaenko, A. & Ahlers, G. 2005 Heat transport by turbulent Rayleigh–Bénard convection in cylindrical samples with aspect ratio one larger. J. Fluid Mech. 536, 145154.CrossRefGoogle Scholar
Greenspan, H. 1968 The Theory of Rotating Fluids, 1st edn. Cambridge University Press.Google Scholar
Grossmann, S. & Lohse, D. 2003 On geometry effects in Rayleigh–Bénard convection. J. Fluid Mech. 486, 105114.CrossRefGoogle Scholar
Hartmann, R., Yerragolam, G.S., Verzicco, R., Lohse, D. & Stevens, R.J.A.M. 2023 Optimal heat transport in rotating Rayleigh–Bénard convection at large Rayleigh numbers. Phys. Rev. Fluids 8, 083501.Google Scholar
Hawkins, E.K., Cheng, J.S., Abbate, J.A., Pilegard, T., Stellmach, S., Julien, K. & Aurnou, J.M. 2023 Laboratory models of planetary core-style convective turbulence. Fluids 8 (4), 106.CrossRefGoogle Scholar
Herrmann, J. & Busse, F.H. 1993 Asymptotic theory of wall-attached convection in a rotating fluid layer. J. Fluid Mech. 255 (1), 183.CrossRefGoogle Scholar
Homsy, G.M. & Hudson, J.L. 1971 The asymptotic stability of a bounded rotating fluid heated from below: conductive basic state. J. Fluid Mech. 45 (2), 353.CrossRefGoogle Scholar
Horn, S. & Aurnou, J.M. 2018 Regimes of Coriolis-centrifugal convection. Phys. Rev. Lett. 120 (20), 204502.CrossRefGoogle ScholarPubMed
Horn, S. & Aurnou, J.M. 2019 Rotating convection with centrifugal buoyancy: numerical predictions for laboratory experiments. Phys. Rev. Fluids 4 (7), 073501.CrossRefGoogle Scholar
Joshi, P., Rajaei, H., Kunnen, R.P.J. & Clercx, H.J.H. 2017 Heat transfer in rotating Rayleigh–Bénard convection with rough plates. J. Fluid Mech. 830, 112.CrossRefGoogle Scholar
Julien, K., Aurnou, J.M., Calkins, M.A., Knobloch, E., Marti, P., Stellmach, S. & Vasil, G.M. 2016 A nonlinear model for rotationally constrained convection with Ekman pumping. J. Fluid Mech. 798, 5087.CrossRefGoogle Scholar
King, E.M., Stellmach, S. & Aurnou, J. M. 2012 Heat transfer by rapidly rotating Rayleigh–Bénard convection. 691, 568582.Google Scholar
King, E.M., Stellmach, S. & Buffett, B. 2013 Scaling behaviour in Rayleigh–Bénard convection with and without rotation. 717, 449471.Google Scholar
King, E.M., Stellmach, S., Noir, J., Hansen, U. & Aurnou, J.M. 2009 Boundary layer control of rotating convection systems. Nature 457 (7227), 301304.CrossRefGoogle ScholarPubMed
Kumar, P., Chakraborty, S., Srinivasan, K. & Dutta, P. 2002 Rayleigh–Bénard convection during solidification of an eutectic solution cooled from the top. Metall. Mater. Trans. B 33 (4), 605612.CrossRefGoogle Scholar
Kunnen, R.P.J. 2021 The geostrophic regime of rapidly rotating turbulent convection. J. Turbul. 22 (4–5), 267296.CrossRefGoogle Scholar
Kunnen, R.P.J., Ostilla-Mónico, R., van der Poel, E.P., Verzicco, R. & Lohse, D. 2016 Transition to geostrophic convection: the role of the boundary conditions. J. Fluid Mech. 799, 413432.CrossRefGoogle Scholar
Liot, O., Salort, J., Kaiser, R., du Puits, R. & Chillà, F. 2016 Boundary layer structure in a rough Rayleigh–Bénard cell filled with air. J. Fluid Mech. 786, 275293.CrossRefGoogle Scholar
Liu, Y. & Ecke, R.E. 1997 Heat transport scaling in turbulent Rayleigh–Bénard convection: effects of rotation and Prandtl number. Phys. Rev. Lett. 79 (12), 22572260.CrossRefGoogle Scholar
Lu, H.-Y., Ding, G.-Y., Shi, J.-Q., Xia, K.-Q. & Zhong, J.-Q. 2021 Heat-transport scaling and transition in geostrophic rotating convection with varying aspect ratio. Phys. Rev. Fluids 6 (7), L071501.CrossRefGoogle Scholar
Madonia, M., Aguirre Guzmán, A.J., Clercx, H.J.H. & Kunnen, R.P.J. 2023 Reynolds number scaling and energy spectra in geostrophic convection. J. Fluid Mech. 962, A36.CrossRefGoogle ScholarPubMed
Maxworthy, N. 1994 Unsteady, turbulent convection into a homogeneous, rotating fluid, with oceanographic applications. J. Phys. Oceanogr. 24.2.0.CO;2>CrossRefGoogle Scholar
Nakagawa, Y. & Frenzen, P. 1955 A theoretical and experimental study of cellular convection in rotating fluids. Tellus 7 (1), 121.CrossRefGoogle Scholar
Niiler, P.P. & Bisshopp, F.E. 1965 On the influence of coriolis force on onset of thermal convection. J. Fluid Mech. 22 (4), 753.CrossRefGoogle Scholar
Pedlosky, J. 1987 Geophysical Fluid Dynamics, 2nd edn. Springer.CrossRefGoogle Scholar
Puthenveettil, B.A. & Arakeri, J.H. 2005 Plume structure in high-Rayleigh-number convection. J. Fluid Mech. 542 (1), 217.CrossRefGoogle Scholar
Qiu, X.L., Xia, K.Q. & Tong, P. 2005 Experimental study of velocity boundary layer near a rough conducting surface in turbulent natural convection. J. Turbul. 6, 113.CrossRefGoogle Scholar
Rajaei, H., Joshi, P., Alards, K.M.J., Kunnen, R.P.J., Toschi, F. & Clercx, H.J.H. 2016 Transitions in turbulent rotating convection: a Lagrangian perspective. Phys. Rev. E 93 (4), 043129.CrossRefGoogle ScholarPubMed
Rana, B.K. 2023 Mixed convection heat transfer from swirling open spherical cavity. ASME J. Heat Mass Transfer 145 (6), 062601.CrossRefGoogle Scholar
Rossby, H.T. 1969 A study of Bénard convection with and without rotation. J. Fluid Mech. 36 (2), 309335.CrossRefGoogle Scholar
Salort, J., Liot, O., Rusaouen, E., Seychelles, F., Tisserand, J.C., Creyssels, M., Castaing, B. & Chillà, F. 2014 Thermal boundary layer near roughnesses in turbulent Rayleigh–Bénard convection: flow structure and multistability. Phys. Fluids 26 (1), 015112.CrossRefGoogle Scholar
Samuel, R., Bhattacharya, S., Asad, A., Chatterjee, S., Verma, M., Samtaney, R. & Anwer, S. 2021 SARAS: a general-purpose PDE solver for fluid dynamics. J. Open Source Softw. 6 (64), 2095.CrossRefGoogle Scholar
Shen, Y., Tong, P. & Xia, K.Q. 1996 Turbulent convection over rough surfaces. Phys. Rev. Lett. 76 (6), 908911.CrossRefGoogle ScholarPubMed
Shishkina, O. 2021 Rayleigh–Bénard convection: the container shape matters. Phys. Rev. Fluids 6 (9), 090502.CrossRefGoogle Scholar
Shraiman, B.I., Avenue, M., Hill, M. & Siggia, E.D. 1990 Heat transport in high-Rayleigh number convection. Phys. Rev. A 42 (6), 36503653.CrossRefGoogle ScholarPubMed
Sprague, M., Julien, K., Knobloch, E. & Werne, J. 2006 Numerical simulation of an asymptotically reduced system for rotationally constrained convection. J. Fluid Mech. 551 (1), 141.CrossRefGoogle Scholar
Stellmach, S., Lischper, M., Julien, K., Vasil, G., Cheng, J.S., Ribeiro, A., King, E.M. & Aurnou, J.M. 2014 Approaching the asymptotic regime of rapidly rotating convection: boundary layers versus interior dynamics. Phys. Rev. Lett. 113 (25), 254501.CrossRefGoogle ScholarPubMed
Stevens, R.J.A.M., Clercx, H.J.H. & Lohse, D. 2010 Boundary layers in rotating weakly turbulent Rayleigh–Bénard convection. Phys. Fluids 22 (8), 085103.CrossRefGoogle Scholar
Stevens, R.J.A.M., Clercx, H.J.H. & Lohse, D. 2013 Heat transport and flow structure in rotating Rayleigh–Bénard convection. Eur. J. Mech. B/Fluids 40, 4149.CrossRefGoogle Scholar
Stevens, R.J.A.M., Zhong, J.-Q., Clercx, H.J.H., Ahlers, G. & Lohse, D. 2009 Transitions between turbulent states in rotating Rayleigh–Bénard convection. Phys. Rev. Lett. 103 (2), 024503.CrossRefGoogle ScholarPubMed
Tummers, M.J. & Steunebrink, M. 2019 Effect of surface roughness on heat transfer in Rayleigh–Bénard convection. Intl J. Heat Mass Transfer 139, 10561064.CrossRefGoogle Scholar
Turcotte, D.L. & Oxburgh, E.R. 1967 Finite amplitude convective cells and continental drift. J. Fluid Mech. 28 (1), 2942.CrossRefGoogle Scholar
Verma, M.K. 2018 Physics of Buoyant Flows: From Instabilities to Turbulence, vol. 3, pp. 39155. World Scientific.CrossRefGoogle Scholar
Verma, M.K., Mishra, P.K., Pandey, A. & Paul, S. 2012 Scalings of field correlations and heat transport in turbulent convection. Phys. Rev. E 85 (1), 016310.CrossRefGoogle ScholarPubMed
Verma, M.K., Samuel, R., Chatterjee, S., Bhattacharya, S. & Asad, A. 2020 Challenges in fluid flow simulations using exascale computing. SN Comput. Sci. 1 (3), 178.CrossRefGoogle Scholar
Wagner, S. & Shishkina, O. 2013 Aspect-ratio dependency of Rayleigh–Bénard convection in box-shaped containers. Phys. Fluids 25 (8), 085110.CrossRefGoogle Scholar
Wei, P., Chan, T.S., Ni, R., Zhao, X.Z. & Xia, K.Q. 2014 Heat transport properties of plates with smooth and rough surfaces in turbulent thermal convection. J. Fluid Mech. 740, 2846.CrossRefGoogle Scholar
Xi, H.-D., Lam, S. & Xia, K.-Q. 2004 From laminar plumes to organized flows: the onset of large-scale circulation in turbulent thermal convection. J. Fluid Mech. 503, 4756.CrossRefGoogle Scholar
Xia, K.-Q., Huang, S.-D., Xie, Y.-C. & Zhang, L. 2023 Tuning heat transport via coherent structure manipulation: recent advances in thermal turbulence. Natl Sci. Rev. 10 (6), nwad012.CrossRefGoogle ScholarPubMed
Xie, Y.C. & Xia, K.Q. 2017 Turbulent thermal convection over rough plates with varying roughness geometries. J. Fluid Mech. 825, 573599.CrossRefGoogle Scholar
Yang, J.-L., Zhang, Y.-Z., Jin, T., Dong, Y.-H., Wang, B.-F. & Zhou, Q. 2021 The dependence of the critical roughness height in two-dimensional turbulent Rayleigh–Bénard convection. J. Fluid Mech. 911, A52.CrossRefGoogle Scholar
Zhang, K. & Liao, X. 2009 The onset of convection in rotating circular cylinders with experimental boundary conditions. J. Fluid Mech. 622, 6373.CrossRefGoogle Scholar
Zhang, Y.-Z., Sun, C., Bao, Y. & Zhou, Q. 2018 How surface roughness reduces heat transport for small roughness heights in turbulent Rayleigh–Bénard convection. J. Fluid Mech. 836, R2.CrossRefGoogle Scholar
Zhong, F., Ecke, R. & Steinberg, V. 1991 Asymmetric modes and the transition to vortex structures in rotating Rayleigh–Bénard convection. Phys. Rev. Lett. 67 (18), 24732476.CrossRefGoogle ScholarPubMed
Zhong, F., Ecke, R.E. & Steinberg, V. 1993 Rotating Rayleigh–Bénard convection: asymmetric modes and vortex states. J. Fluid Mech. 249 (1), 135.CrossRefGoogle Scholar
Zhong, J.-Q., Stevens, R.J.A.M., Clercx, H.J.H., Verzicco, R., Lohse, D. & Ahlers, G. 2009 Prandtl-, Rayleigh-, and Rossby-number dependence of heat transport in turbulent rotating Rayleigh–Bénard convection. Phys. Rev. Lett. 102 (4), 044502.CrossRefGoogle ScholarPubMed
Zhu, X., Stevens, R.J.A.M., Verzicco, R. & Lohse, D. 2017 Roughness-facilitated local 1/2 scaling does not imply the onset of the ultimate regime of thermal convection. Phys. Rev. Lett. 119 (15), 154501.CrossRefGoogle Scholar