Hostname: page-component-848d4c4894-ttngx Total loading time: 0 Render date: 2024-06-06T07:37:30.031Z Has data issue: false hasContentIssue false

Stability and receptivity analyses of mixed convection in unstably stratified horizontal boundary layers

Published online by Cambridge University Press:  17 April 2023

Gabriel Y.R. Hamada
Affiliation:
School of Mechanical Engineering, University of Campinas, Campinas, SP 13083-860, Brazil
William R. Wolf*
Affiliation:
School of Mechanical Engineering, University of Campinas, Campinas, SP 13083-860, Brazil
Diogo B. Pitz
Affiliation:
Department of Mechanical Engineering, Federal University of Paraná, Curitiba, PR 81530-000, Brazil
Leonardo S. de B. Alves
Affiliation:
Department of Mechanical Engineering, Fluminense Federal University, Niterói, RJ 24210-240, Brazil
*
Email address for correspondence: wolf@fem.unicamp.br

Abstract

A linear stability analysis is employed to investigate thermal effects in shear flows. The cases analysed consist of unstably stratified horizontal boundary layers under a mixed convection regime, where forced and free convection mechanisms compete. Governing equations are given by the incompressible Navier–Stokes equations with the Oberbeck–Boussinesq approximation, where the base flow comes from their boundary layer approximation. Modal and non-modal analyses are used to investigate the behaviour of small-amplitude disturbances superposed to this base flow. An evaluation of the inertial, shearing and buoyancy mechanisms in the mixed convection boundary layer stability is performed through variations in the Reynolds, Prandtl and Richardson numbers. On the one hand, the spectra lead to the parametric conditions for the time-asymptotic onset of instability, which is still caused by Tollmien–Schlichting (TS) waves as in the traditional Blasius case. However, thermal effects have a destabilizing effect on them, more so for liquids than gases. On the other hand, the pseudospectra obtained from a resolvent analysis indicate the existence of transient growth at this same onset. However, contrary to the traditional Blasius case, thermal effects cause it to be dominated by the continuous frequency spectrum instead of the discrete TS modes. In order to elucidate this qualitative change, a componentwise input–output analysis is employed to quantify the receptivity to specific external disturbances. It shows that thermal effects directly impact the conversion of thermal to kinetic linear disturbance energy, causing a strong amplification of the flow response due to the non-normality of the linear operator. Results reveal that heating from below causes the forcing and response modes of the input–output analysis to have a free-stream spatial support due to non-modal excitation of the continuous spectrum. Such a behaviour suggests that the unstably stratified boundary layer is susceptible to free-stream thermal disturbances, which can potentially impact bypass transition.

Type
JFM Papers
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andersson, P., Berggreen, M. & Henningson, D. 1999 Optimal disturbances and bypass transition in boundary layers. Phys. Fluids 11, 134150.CrossRefGoogle Scholar
Candelier, J., Le Dizès, S. & Millet, C. 2012 Inviscid instability of a stably stratified compressible boundary layer on an inclined surface. J. Fluid Mech. 694, 524539.CrossRefGoogle Scholar
Chandrasekhar, S. 1961 Hydrodynamic and Hydromagnetic Stability. Clarendon.Google Scholar
Chen, J., Bai, Y. & Le Dizès, S. 2016 Instability of a boundary layer flow on a vertical wall in a stably stratified fluid. J. Fluid Mech. 795, 262277.CrossRefGoogle Scholar
Chen, T.S. & Mucoglu, A. 1979 Wave instability of mixed convection flow over a horizontal flat plate. Intl J. Heat Mass Transfer 22 (2), 185196.CrossRefGoogle Scholar
Chen, T.S., Sparrow, E.M. & Mucoglu, A. 1977 Mixed convection in boundary layer flow on a horizontal plate. Trans. ASME J. Heat Transfer 99 (1), 6671.CrossRefGoogle Scholar
Cheng, K.C. & Wu, R.S. 1976 Maximum density effects on thermal instability of horizontal laminar boundary layers. Appl. Sci. Res. 31, 465479.CrossRefGoogle Scholar
Chimonas, G. 2002 On internal gravity waves associated with the stable boundary layer. Boundary-Layer Meteorol. 102, 139155.CrossRefGoogle Scholar
Corbett, P. & Bottaro, A. 2000 Optimal perturbations for boundary layers subject to stream-wise pressure gradient. Phys. Fluids 12 (1), 120130.CrossRefGoogle Scholar
Dennis, K. & Siddiqui, K. 2021 a The influence of wall heating on turbulent boundary layer characteristics during mixed convection. Intl J. Heat Fluid Flow 91, 108839.CrossRefGoogle Scholar
Dennis, K. & Siddiqui, K. 2021 b Visualization and characterization of thermals in a heated turbulent boundary layer. Exp. Therm. Fluid Sci. 120, 110237.CrossRefGoogle Scholar
Dennis, K. & Siddiqui, K. 2022 Characteristics of the wall temperature field in a mixed convection turbulent boundary layer. Intl Commun. Heat Mass Transfer 131, 105864.CrossRefGoogle Scholar
Grosch, C.E. & Salwen, H. 1978 The continuous spectrum of the Orr–Sommerfeld equation. Part 1. The spectrum and the eigenfunctions. J. Fluid Mech. 87, 3354.CrossRefGoogle Scholar
Huerre, P. & Monkewitz, P.A. 1990 Local and global instabilities in spatially developing flows. Annu. Rev. Fluid Mech. 22, 473537.CrossRefGoogle Scholar
Jensen, K.F, Einset, E.O & Fotiadis, D.I. 1991 Flow phenomena in chemical vapor deposition of thin films. Annu. Rev. Fluid Mech. 23 (1), 197232.CrossRefGoogle Scholar
John Soundar Jerome, J., Chomaz, J.M. & Huerre, P. 2012 Transient growth in Rayleigh–Bénard–Poiseuille/Couette convection. Phys. Fluids 24 (4), 044103.CrossRefGoogle Scholar
Jovanović, M.R. 2021 From bypass transition to flow control and data-driven turbulence modeling: an input–output viewpoint. Annu. Rev. Fluid Mech. 53, 311345.CrossRefGoogle Scholar
Jovanović, M.R. & Bamieh, B. 2005 Componentwise energy amplification in channel flows. J. Fluid Mech. 534, 145183.CrossRefGoogle Scholar
Mahajan, R.L. 1996 Transport phenomena in chemical vapor-deposition systems. Adv. Heat Transfer 28, 339425.CrossRefGoogle Scholar
McKeon, B.J. & Sharma, A.S. 2010 A critical-layer framework for turbulent pipe flow. J. Fluid Mech. 658, 336382.CrossRefGoogle Scholar
Monokrousos, A., Åkervik, E., Brandt, L. & Henningson, D.S. 2010 Global three-dimensional optimal disturbances in the Blasius boundary-layer flow using time-steppers. J. Fluid Mech. 650, 181214.CrossRefGoogle Scholar
Nicolas, X., Luijkx, J.M. & Platten, J.K. 2000 Linear stability of mixed convection flows in horizontal rectangular channels of finite transversal extension heated from below. Intl J. Heat Mass Transfer 43 (4), 589610.CrossRefGoogle Scholar
Nogueira, P.A.S., Cavalieri, A.V.G., Hanifi, A. & Henningson, D.S. 2020 Resolvent analysis in unbounded flows: role of free-stream modes. Theor. Comput. Fluid Dyn. 34 (1), 163176.CrossRefGoogle Scholar
Parente, E., Robinet, J.C., De Palma, P. & Cherubini, S. 2020 Modal and nonmodal stability of a stably stratified boundary layer flow. Phys. Rev. Fluids 5 (11), 113901.CrossRefGoogle Scholar
Peters, G. & Wilkinson, J.H. 1970 $Ax=\lambda Bx$ and the generalized eigenproblem. SIAM J. Numer. Anal. 7 (4), 479492.CrossRefGoogle Scholar
Reed, H.L., Saric, W.S. & Arnal, D. 1996 Linear stability theory applied to boundary layers. Annu. Rev. Fluid Mech. 28 (1), 389428.CrossRefGoogle Scholar
Ricciardi, T.R., Wolf, W.R. & Taira, K. 2022 Transition, intermittency and phase interference effects in airfoil secondary tones and acoustic feedback loop. J. Fluid Mech. 937, A3.CrossRefGoogle Scholar
Sameen, A. & Govindarajan, R. 2007 The effect of wall heating on instability of channel flow. J. Fluid Mech. 577, 417442.CrossRefGoogle Scholar
Schmid, P.J. 2007 Nonmodal stability theory. Annu. Rev. Fluid Mech. 39, 129162.CrossRefGoogle Scholar
Schmid, P.J. & Brandt, L. 2014 Analysis of fluid systems: stability, receptivity, sensitivity. Appl. Mech. Rev. 66 (2), 024803.CrossRefGoogle Scholar
Schmid, P.J. & Henningson, D.S. 2000 Stability and Transition in Shear Flows, vol. 142. Springer Science & Business Media.Google Scholar
Schneider, W. 1979 A similarity solution for combined forced and free convection flow over a horizontal plate. Intl J. Heat Mass Transfer 22 (10), 14011406.CrossRefGoogle Scholar
Sparrow, E.M., Eichhorn, R. & Gregg, J.L. 1959 Combined forced and free convection in a boundary layer flow. Phys. Fluids 2 (3), 319328.CrossRefGoogle Scholar
Sparrow, E.M., Quack, H. & Boerner, C.J. 1970 Local nonsimilarity boundary-layer solutions. AIAA J. 8 (11), 19361942.CrossRefGoogle Scholar
Sparrow, E.M. & Yu, H.S. 1971 Local non-similarity thermal boundary-layer solutions. Trans. ASME J. Heat Transfer 93 (4), 328334.CrossRefGoogle Scholar
Teixeira, R. de S. & Alves, L.S. de B. 2017 Minimal gain marching schemes: searching for unstable steady-states with unsteady solvers. Theor. Comput. Fluid Dyn. 31 (5–6), 607621.CrossRefGoogle Scholar
Trefethen, L.N. & Embree, M. 2005 Spectra and Pseudospectra: The Behavior of Nonnormal Matrices and Operators. Princeton University Press.CrossRefGoogle Scholar
Vo, T., Potherat, A. & Sheard, G.J. 2017 Linear stability of horizontal, laminar fully developed, quasi-two-dimensional liquid metal duct flow under a transverse magnetic field and heated from below. Phys. Rev. Fluids 2, 033902.CrossRefGoogle Scholar
Wu, R.S. & Cheng, K.C. 1976 Thermal instability of Blasius flow along horizontal plates. Intl J. Heat Mass Transfer 19 (8), 907913.CrossRefGoogle Scholar
Wu, X. & Moin, P. 2010 Transitional and turbulent boundary layer with heat transfer. Phys. Fluids 22 (8), 085105.CrossRefGoogle Scholar
Wu, X. & Zhang, J. 2008 Instability of a stratified boundary layer and its coupling with internal gravity waves. Part 1. Linear and nonlinear instabilities. J. Fluid Mech. 595, 379408.CrossRefGoogle Scholar
Zaki, T.A. & Durbin, P.A. 2021 Transition to turbulence. In Advanced Approaches in Turbulence (ed. P. Durbin), pp. 373–397. Elsevier.CrossRefGoogle Scholar