Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-06-07T06:41:03.261Z Has data issue: false hasContentIssue false

Strong non-Boussinesq effects near the onset of convection in a fluid near its critical point

Published online by Cambridge University Press:  16 November 2009

GUENTER AHLERS*
Affiliation:
Department of Physics, University of California, Santa Barbara, CA 93106, USA
BERND DRESSEL
Affiliation:
Physikalisches Institut, Universität Bayreuth, D-95440 Bayreuth, Germany
JAECHUL OH
Affiliation:
Plasma Physics Division, U.S. Naval Research Laboratory, Washington, DC 20375, USA
WERNER PESCH
Affiliation:
Physikalisches Institut, Universität Bayreuth, D-95440 Bayreuth, Germany
*
Email address for correspondence: guenter@physics.ucsb.edu

Abstract

Measurements of fluctuations and convection patterns in horizontal layers of fluid heated from below and near the onset of Rayleigh–Bénard convection (RBC) are reported under conditions where the fluid properties vary strongly over the temperature range ΔT = TbTt (Tb and Tt are the temperatures at the bottom and top of the sample, respectively). To facilitate a comparison with the data, the theory of Busse (J. Fluid Mech., vol. 30, 1967, p. 625) of these so called non-Oberbeck–Boussinesq (NOB) effects, which applies to the case of relatively weak (and linear) temperature dependences, was extended to arbitrary variations with temperature. It is conceptually useful to divide the variations with temperature of the fluid properties into two disjunct parts. One part is chosen so that it preserves the reflection symmetry of the system about the horizontal midplane, while the remainder breaks that symmetry. The latter, exclusively considered by Busse, leads (in contrast to the formation of the typical convection rolls in RBC) to hexagons immediately above the transition to convection at the critical temperature difference ΔTc. The symmetric part, on the other hand, does not prevent the bifurcation to rolls, but may become very important for the determination of ΔTc. In the experiment the fluid was sulfur hexafluoride at temperatures above but close to the gas–liquid critical point, where all fluid properties vary strongly with temperature. All measurements were done along isobars by varying ΔT. Patterns were observed above onset (ΔT ≳ ΔTc), while for the conduction state at ΔT < ΔTc there were only fluctuations induced by Brownian motion. When the mean temperature Tm = (Tb + Tt)/2 was such that the density ρ at Tm was equal to the critical density ρ*, the mirror symmetry about the horizontal midplane of the sample was essentially preserved. In that case, as expected, we found a direct transition to rolls and the critical temperature difference ΔTc was considerably shifted compared to the critical value ΔTc,OB in the absence of NOB effects. When, on the other hand, Tm was not located on the critical isochore, the NOB effects broke the reflection symmetry and led to a hysteretic transition from fluctuations to hexagonal patterns. In this latter case the hexagonal pattern, the observed hysteresis at onset and the transition from hexagons to rolls at larger ΔT were consistent with the ‘classical’ predictions by Busse.

JFM classification

Type
Papers
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ahlers, G. 1980 Effect of departures from the Oberbeck–Boussinesq approximation on the heat transport of horizontal convecting fluid layers. J. Fluid Mech. 98, 137148.CrossRefGoogle Scholar
Ahlers, G. 2006 Experiments with Rayleigh–Bénard convection. In Dynamics of Spatio-Temporal Cellular Structures – Henri Bénard Centenary Review (ed. Mutabazi, I., Wesfreid, J. E. & Guyon, E.), vol. 207, pp. 6794. Springer.CrossRefGoogle Scholar
Ahlers, G., Brown, E., FonteneleAraujo, F. Araujo, F., Funfschilling, D., Grossmann, S. & Lohse, D. 2006 Non-Oberbeck–Boussinesq effects in strongly turbulent Rayleigh–Bénard convection. J. Fluid Mech. 569, 409445.CrossRefGoogle Scholar
Ahlers, G., Calzavarini, E., FonteneleAraujo, F. Araujo, F., Funfschilling, D., Grossmann, S., Lohse, D. & Sugiyama, K. 2008 Non-Oberbeck–Boussinesq effects in turbulent thermal convection in ethane close to the critical point. Phys. Rev. E 77, 046302–1–16.Google Scholar
Ahlers, G., FonteneleAraujo, F. Araujo, F., Funfschilling, D., Grossmann, S. & Lohse, D. 2007 Non-Oberbeck–Boussinesq effects in gaseous Rayleigh–Bénard convection. Phys. Rev. Lett. 98, 054501–1–4.CrossRefGoogle ScholarPubMed
Ahlers, G. & Oh, J. 2003 Critical phenomena near bifurcations in nonequilibrium systems. Intl J. Mod. Phys. B 17, 38993908.CrossRefGoogle Scholar
Ashkenazi, S. & Steinberg, V. 1999 High Rayleigh number turbulent convection in a gas near the gas–liquid critical point. Phys. Rev. Lett. 83, 36413644.CrossRefGoogle Scholar
Assenheimer, M. & Steinberg, V. 1993 Rayleigh–Bénard convection near the gas–liquid critical point. Phys. Rev. Lett. 70, 38883891.CrossRefGoogle ScholarPubMed
Bodenschatz, E., de Bruyn, J. R., Ahlers, G. & Cannell, D. S. 1991 Transition between patterns in thermal convection. Phys. Rev. Lett. 67, 30783081.CrossRefGoogle ScholarPubMed
Bodenschatz, E., Cannell, D. S., de Bruyn, J. R., Ecke, R., Hu, Y., Lerman, K. & Ahlers, G. 1992 Experiments on three systems with non-variational aspects. Physica D 61, 7793.CrossRefGoogle Scholar
Bodenschatz, E., Pesch, W. & Ahlers, G. 2000 Recent developments in Rayleigh–Bénard convection. Annu. Rev. Fluid Mech. 32, 709778.CrossRefGoogle Scholar
Boussinesq, J. 1903 Theorie analytique de la chaleur, Vol. 2. Gauthier-Villars.Google Scholar
de Bruyn, J. R., Bodenschatz, E., Morris, S. W., Trainoff, S., Hu, Y., Cannell, D. S. & Ahlers, G. 1996 Apparatus for the study of Rayleigh–Bénard convection in gases under pressure. Rev. Sci. Instrum. 67, 20432067.CrossRefGoogle Scholar
Busse, F. H. 1967 The stability of finite amplitude cellular convection and its relation to an extremum principle. J. Fluid Mech. 30, 625649.CrossRefGoogle Scholar
Ciliberto, S., Coullet, P., Lega, J. & Pampaloni, E. 1990 Defects in roll-hexagon competition. Phys. Rev. Lett. 65, 23702373.CrossRefGoogle ScholarPubMed
Ciliberto, S., Pampaloni, E. & Perez-Garcia, C. 1988 Competition between different symmetries in convective patterns. Phys. Rev. Lett. 61, 11981201.Google ScholarPubMed
Cross, M. C. 1980 Derivation of the amplitude equation at the Rayleigh–Bénard instability. Phys. Fluids 23, 17271730.CrossRefGoogle Scholar
Gough, D. O. 1969 The anelastic approximation in thermal convection. J. Atmos. Sci. 26, 448456.2.0.CO;2>CrossRefGoogle Scholar
Haken, H. 1996 Slaving principle revisited. Physica D 97, 95103.CrossRefGoogle Scholar
Hoard, C. Q., Robertson, C. R. & Acrivos, A. 1970 Experiments on the cellular structure in Bénard convection. Intl J. Heat Mass Transfer 13, 849856.CrossRefGoogle Scholar
Hohenberg, P. C. & Swift, J. S. 1992 Effects of additive noise at the onset of Rayleigh–Bénard convection. Phys. Rev. A 46, 47734785.CrossRefGoogle ScholarPubMed
Hoogland, J. H. B., van den Berg, H. R. & Trappeniers, N. J. 1985 Measurements of the viscosity of sulfur hexaflouride up to 100 bar by a capillary-flow viscometer. Physica A 134, 169192.Google Scholar
Kestin, J. & Imaishi, N. 1985 Thermal conductivtity of sulfurhexafluoride. Intl J. Thermophys. 6, 107118.CrossRefGoogle Scholar
Kogan, A. B. & Meyer, H. 2001 Heat transfer and convection onset in a compressible fluid: 3He near the critical point. Phys. Rev. E 63 (056310), 115.Google Scholar
Landau, L. D. & Lifshitz, E. M. 1987 Fluid Mechanics. Pergamon.Google Scholar
Lim, T. K., Swinney, H. L., Langley, K. H. & Kachnowski, T. A. 1971 Rayleigh linewidth in SF6 near the critical point. Phys. Rev. Lett. 27, 17761779.CrossRefGoogle Scholar
Lis, J. & Kellard, P. O. 1965 Measurements of the thermal conductivity of sulphur hexafluoride and 50% (volume) mixture of sulphur hexafluoride and nitrogen. Br. J. Appl. Phys. 16, 10991104.CrossRefGoogle Scholar
Madruga, S. & Riecke, H. 2007 Hexagons and spiral-defect chaos in non-Boussinesq convection at low Prandtl numbers. Phys. Rev. E 75, 026210–1–14.CrossRefGoogle ScholarPubMed
Madruga, S., Riecke, H. & Pesch, W. 2007 Reentrant hexagons in non-Boussinesq convection. J. Fluid. Mech 548, 341360.CrossRefGoogle Scholar
Malomed, B. A., Nepomnyashchy, A. A. & Tribelsky, M. I. 1990 Domain boundaries in convection patterns. Phys. Rev. A 42, 72447263.CrossRefGoogle ScholarPubMed
Oberbeck, A. 1879 Über die Wärmeleitung der Flüssigkeiten bei Berücksichtigung der Strömungen infolge von Temperaturdifferenzen. Ann. Phys. Chem. 7, 271292.CrossRefGoogle Scholar
Oh, J. & Ahlers, G. 2003 Thermal-noise effect on the transition to Rayleigh-Bénard convection. Phys. Rev. Lett. 91 (094501), 14.CrossRefGoogle ScholarPubMed
Oh, J., Ortiz de Zárate, J. M., Sengers, J. V. & Ahlers, G. 2004 Dynamics of fluctuations in a fluid below the onset of Rayleigh–Bénard convection. Phys. Rev. E 69, 021106.CrossRefGoogle Scholar
Pampaloni, E., Perez-Garcia, C., Albavetti, L. & Ciliberto, S. 1992 Transition from hexagons to rolls in convection in fluids under non-Boussinesq conditions. J. Fluid Mech. 234, 393416.Google Scholar
Perez-Garcia, C., Pampaloni, E. & Ciliberto, S. 1990 Finite-size effects in the transition from hexagons to rolls in convective systems. Europhys. Lett. 12, 5155.CrossRefGoogle Scholar
Plaut, E. & Pesch, W. 1999 Extended weakly nonlinear theory of planar nematic convection. Phys. Rev. E 59, 1747–1469.CrossRefGoogle Scholar
Roy, R. & Steinberg, V. 2002 Reentrant hexagons in non-Boussinesq Rayleigh–Bénard convection: effect of compressibility. Phys. Rev. Lett. 88, 244903–1–4.CrossRefGoogle ScholarPubMed
Schlüter, A., Lortz, D. & Busse, F. H. 1965 On the stability of steady finite amplitude convection. J. Fluid Mech. 23, 129144.CrossRefGoogle Scholar
Strehlow, T. & Vogel, E. 1989 Temperature dependence and initial density dependence of the viscosity of sulphur hexafluoride. Physica A 161, 101117.CrossRefGoogle Scholar
Sugiyama, K., Calzavarini, E., Grossmann, S. & Lohse, D. 2007 Non-Oberbeck–Boussinesq effects in two-dimensional Rayleigh–Bénard convection in glycerol. Europhys. Lett. 80 (34002), 16.Google Scholar
Swift, J. & Hohenberg, P. C. 1977 Hydrodynamic fluctuations at the convective instability. Phys. Rev. A 15, 319328.Google Scholar
Swinney, H. L. & Henry, D. L. 1973 Dynamics of fluids near the critical point: decay rate of order-parameter fluctuations. Phys. Rev. A 8, 25862617.Google Scholar
Trainoff, S. P. & Cannell, D. S. 2002 Physical optics treatment of the shadowgraph. Phys. Fluids 14, 13401363.CrossRefGoogle Scholar
Tschammer, A. 1996 Nichtlineare Aspekte der Rayleigh–Bénard Konvektion in isotropen und anisotropen Fluiden. PhD thesis, Universität Bayreuth, Bavaria.Google Scholar
Walden, R. W. & Ahlers, G. 1981 Non-Boussinesq and penetrative convection in a cylindrical cell. J. Fluid Mech. 109, 89114.CrossRefGoogle Scholar
Wu, X. Z. & Libchaber, A. 1991 Non-Boussinesq effects in free thermal convection. Phys. Rev. A 43, 28332839.CrossRefGoogle ScholarPubMed
Wyczalkowska, A. K. & Sengers, J. V. 1999 Thermodynamic properties of sulfur hexafluoride in the critical region. J. Chem. Phys. 111, 15511560.CrossRefGoogle Scholar
Zhang, J., Childress, S. & Libchaber, A. 1997 Non-Boussinesq effect: thermal convection with broken symmetry. Phys. Fluids 9, 10341042.CrossRefGoogle Scholar
Zhang, J., Childress, S. & Libchaber, A. 1999 Non-Boussinesq effect: asymmetric velocity profiles in thermal convection. Phys. Fluids 10, 15341536.CrossRefGoogle Scholar