Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-06-05T10:23:45.790Z Has data issue: false hasContentIssue false

Time-delayed characteristics of turbulence in pulsatile pipe flow

Published online by Cambridge University Press:  11 January 2024

Xu Liu
Affiliation:
School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
Hongbo Zhu
Affiliation:
School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
Yan Bao*
Affiliation:
School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China Key Laboratory of Hydrodynamics of Ministry of Education, Shanghai 200240, PR China
Narakorn Srinil
Affiliation:
School of Engineering, Newcastle University, NE1 7RU, UK
Dai Zhou
Affiliation:
School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China Key Laboratory of Hydrodynamics of Ministry of Education, Shanghai 200240, PR China
Zhaolong Han
Affiliation:
School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China Key Laboratory of Hydrodynamics of Ministry of Education, Shanghai 200240, PR China
*
Email address for correspondence: ybao@sjtu.edu.cn

Abstract

Direct numerical simulations are performed to study temporal variations of the wall shear stresses and flow dynamics in the turbulent pulsatile pipe flow. The mechanisms, responsible for the paradoxical phenomenon for which the amplitude of the oscillating wall shear stress in the turbulent flow is smaller than that in the laminar flow for the same pulsation conditions, are investigated. It is shown that the delayed response of turbulence in the buffer layer generates a large magnitude of the radial gradient of the Reynolds shear stress near the wall, which counteracts the effect of the oscillating pressure gradient on the change of the streamwise velocity and hence reduces the amplitude of the wall shear stress. Such a delayed response consists of two processes: the delayed development of near-wall streaks and the subsequent energy redistribution from the streamwise velocity fluctuation to the other two co-existing components. This is a dynamical manifestation of the viscoelasticity of turbulent eddies. As the frequency is reduced, the variation of the friction Reynolds number results in a phase-wise variation of the time scale and intensity of the turbulence response, causing the hysteresis of the wall shear stress. Such a phase asymmetry is amplified by the increase of the pulsation amplitude. An examination of the energy spectra reveals that the near-wall streaks are stretched in the streamwise direction during the acceleration phase, and then break up into small-scale structures in the deceleration phase, accompanied by the enhanced dissipation that transforms the turbulent kinetic energy into heat.

Type
JFM Papers
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Avila, K., Moxey, D., De Lozar, A., Avila, M., Barkley, D. & Hof, B. 2011 The onset of turbulence in pipe flow. Science 333 (6039), 192196.CrossRefGoogle ScholarPubMed
Avila, M., Willis, A.P. & Hof, B. 2010 On the transient nature of localized pipe flow turbulence. J. Fluid Mech. 646, 127136.CrossRefGoogle Scholar
Blackburn, H.M., Lee, D., Albrecht, T. & Singh, J. 2019 Semtex: a spectral element–fourier solver for the incompressible Navier–Stokes equations in cylindrical or cartesian coordinates. Comput. Phys. Commun. 245, 106804.CrossRefGoogle Scholar
Blackburn, H.M. & Sherwin, S.J. 2004 Formulation of a galerkin spectral element–fourier method for three-dimensional incompressible flows in cylindrical geometries. J. Comput. Phys. 197 (2), 759778.CrossRefGoogle Scholar
Brereton, G.J., Reynolds, W.C. & Jayaraman, R. 1990 Response of a turbulent boundary layer to sinusoidal free-stream unsteadiness. J. Fluid Mech. 221, 131159.CrossRefGoogle Scholar
Chen, W., Chan, L., Hutchins, N., Poon, E. & Ooi, A. 2014 Direct numerical simulation of pulsatile flow in pipes. In Proceedings of the 19th Australasian Fluid Mechanics Conference, Melbourne, Australia (ed. H. Chowdhury & F. Alam), pp. 8–11. RMIT University.Google Scholar
Cheng, Z., Jelly, T.O., Illingworth, S.J., Marusic, I. & Ooi, A.S.H. 2020 Forcing frequency effects on turbulence dynamics in pulsatile pipe flow. Intl J. Heat Fluid Flow 82, 108538.CrossRefGoogle Scholar
Colombo, A.F., Lee, P. & Karney, B.W. 2009 A selective literature review of transient-based leak detection methods. J. Hydro-Environ. Res. 2 (4), 212227.CrossRefGoogle Scholar
Cunningham, K.S. & Gotlieb, A.I. 2005 The role of shear stress in the pathogenesis of atherosclerosis. Lab. Invest. 85 (1), 923.CrossRefGoogle ScholarPubMed
Eggels, J.G.M., Unger, F., Weiss, M.H., Westerweel, J., Adrian, R.J., Friedrich, R. & Nieuwstadt, F.T.M. 1994 Fully developed turbulent pipe flow: a comparison between direct numerical simulation and experiment. J. Fluid Mech. 268, 175210.CrossRefGoogle Scholar
Feldmann, D., Morón, D. & Avila, M. 2020 Spatiotemporal intermittency in pulsatile pipe flow. Entropy 23 (1), 46.CrossRefGoogle ScholarPubMed
Feldmann, D. & Wagner, C. 2012 Direct numerical simulation of fully developed turbulent and oscillatory pipe flows at. J. Turbul. 13, N32.CrossRefGoogle Scholar
Feldmann, D. & Wagner, C. 2016 a On phase asymmetries in oscillatory pipe flow. In New Results in Numerical and Experimental Fluid Mechanics X (ed. A. Dillmann, G. Heller, E. Krämer, C. Wagner & C. Breitsamter), pp. 113–122. Springer.CrossRefGoogle Scholar
Feldmann, D. & Wagner, C. 2016 b On the influence of computational domain length on turbulence in oscillatory pipe flow. Intl J. Heat Fluid Flow 61, 229244.CrossRefGoogle Scholar
Fukagata, K., Iwamoto, K. & Kasagi, N. 2002 Contribution of Reynolds stress distribution to the skin friction in wall-bounded flows. Phys. Fluids 14 (11), L73L76.CrossRefGoogle Scholar
Gerrard, J.H. 1971 An experimental investigation of pulsating turbulent water flow in a tube. J. Fluid Mech. 46 (1), 4364.CrossRefGoogle Scholar
Greenblatt, D. & Moss, E.A. 1999 Pipe-flow relaminarization by temporal acceleration. Phys. Fluids 11 (11), 34783481.CrossRefGoogle Scholar
Greenblatt, D. & Moss, E.A. 2004 Rapid temporal acceleration of a turbulent pipe flow. J. Fluid Mech. 514, 6575.CrossRefGoogle Scholar
Guerrero, B., Lambert, M.F. & Chin, R.C. 2021 Transient dynamics of accelerating turbulent pipe flow. J. Fluid Mech. 917, A43.CrossRefGoogle Scholar
He, K., Seddighi, M. & He, S. 2016 DNS study of a pipe flow following a step increase in flow rate. Intl J. Heat Fluid Flow 57, 130141.CrossRefGoogle Scholar
He, S. & Ariyaratne, C. 2011 Wall shear stress in the early stage of unsteady turbulent pipe flow. ASCE J. Hydraul. Engng 137 (5), 606610.CrossRefGoogle Scholar
He, S., Ariyaratne, C. & Vardy, A.E. 2011 Wall shear stress in accelerating turbulent pipe flow. J. Fluid Mech. 685, 440460.CrossRefGoogle Scholar
He, S. & Jackson, J.D. 2000 A study of turbulence under conditions of transient flow in a pipe. J. Fluid Mech. 408, 138.CrossRefGoogle Scholar
He, S. & Jackson, J.D. 2009 An experimental study of pulsating turbulent flow in a pipe. Eur. J. Mech. (B/Fluids) 28 (2), 309320.CrossRefGoogle Scholar
He, S. & Seddighi, M. 2013 Turbulence in transient channel flow. J. Fluid Mech. 715, 60102.CrossRefGoogle Scholar
He, S. & Seddighi, M. 2015 Transition of transient channel flow after a change in Reynolds number. J. Fluid Mech. 764, 395427.CrossRefGoogle Scholar
Hof, B., Westerweel, J., Schneider, T.M. & Eckhardt, B. 2006 Finite lifetime of turbulence in shear flows. Nature 443 (7107), 5962.CrossRefGoogle ScholarPubMed
Hussain, A.K.M.F. & Reynolds, W.C. 1970 The mechanics of an organized wave in turbulent shear flow. J. Fluid Mech. 41 (2), 241258.CrossRefGoogle Scholar
Jung, S.Y. & Chung, Y.M. 2012 Large-eddy simulation of accelerated turbulent flow in a circular pipe. Intl J. Heat Fluid Flow 33 (1), 18.CrossRefGoogle Scholar
Jung, S.Y. & Kim, K. 2017 Transient behaviors of wall turbulence in temporally accelerating channel flows. Intl J. Heat Fluid Flow 67, 1326.CrossRefGoogle Scholar
Liu, X., Zhu, H., Bao, Y., Zhou, D. & Han, Z. 2022 Turbulence suppression by streamwise-varying wall rotation in pipe flow. J. Fluid Mech. 951, A35.CrossRefGoogle Scholar
Lodahl, C.R., Sumer, B.M. & Fredsøe, J. 1998 Turbulent combined oscillatory flow and current in a pipe. J. Fluid Mech. 373, 313348.CrossRefGoogle Scholar
Manna, M. & Vacca, A. 2005 Resistance reduction in pulsating turbulent pipe flows. Trans. ASME J. Engng Gas Turbines Power 127 (2), 410417.CrossRefGoogle Scholar
Manna, M., Vacca, A. & Verzicco, R. 2012 Pulsating pipe flow with large-amplitude oscillations in the very high frequency regime. Part 1. Time-averaged analysis. J. Fluid Mech. 700, 246282.CrossRefGoogle Scholar
Mao, Z. & Hanratty, T.J. 1994 Influence of large-amplitude oscillations on turbulent drag. AIChE J. 40 (10), 16011610.CrossRefGoogle Scholar
Mao, Z.-X. & Hanratty, T.J. 1986 Studies of the wall shear stress in a turbulent pulsating pipe flow. J. Fluid Mech. 170, 545564.CrossRefGoogle Scholar
Maruyama, T., Kuribayashi, T. & Mizushina, T. 1976 The structure of the turbulence in transient pipe flows. J. Chem. Engng Japan 9 (6), 431439.CrossRefGoogle Scholar
Mathur, A. 2016 Study of accelerating and decelerating turbulent flows in a channel. PhD thesis, University of Sheffield.Google Scholar
Mathur, A., Gorji, S., He, S., Seddighi, M., Vardy, A.E., O'Donoghue, T. & Pokrajac, D. 2018 Temporal acceleration of a turbulent channel flow. J. Fluid Mech. 835, 471490.CrossRefGoogle Scholar
Morón, D., Feldmann, D. & Avila, M. 2022 Effect of waveform on turbulence transition in pulsatile pipe flow. J. Fluid Mech. 948, A20.CrossRefGoogle Scholar
Padrino, J.C., Srinil, N., Kurushina, V. & Swailes, D. 2023 Prediction of unsteady slug flow in a long curved inclined riser with a slug tracking model. Intl J. Multiphase Flow 162, 104410.CrossRefGoogle Scholar
Quadrio, M. & Sibilla, S. 2000 Numerical simulation of turbulent flow in a pipe oscillating around its axis. J. Fluid Mech. 424, 217241.CrossRefGoogle Scholar
Ramaprian, B.R. & Tu, S.-W. 1980 An experimental study of oscillatory pipe flow at transitional Reynolds numbers. J. Fluid Mech. 100 (3), 513544.CrossRefGoogle Scholar
Ramaprian, B.R. & Tu, S.W. 1983 Fully developed periodic turbulent pipe flow. Part 2. The detailed structure of the flow. J. Fluid Mech. 137, 5981.CrossRefGoogle Scholar
Ronneberger, D. & Ahrens, C.D. 1977 Wall shear stress caused by small amplitude perturbations of turbulent boundary-layer flow: an experimental investigation. J. Fluid Mech. 83 (3), 433464.CrossRefGoogle Scholar
Scotti, A. & Piomelli, U. 2001 Numerical simulation of pulsating turbulent channel flow. Phys. Fluids 13 (5), 13671384.CrossRefGoogle Scholar
Seddighi, M., He, S., Vardy, A.E. & Orlandi, P. 2014 Direct numerical simulation of an accelerating channel flow. Flow Turbul. Combust. 92 (1), 473502.CrossRefGoogle Scholar
Shemer, L. & Kit, E. 1984 An experimental investigation of the quasisteady turbulent pulsating flow in a pipe. Phys. Fluids 27 (1), 7276.CrossRefGoogle Scholar
Shemer, L., Wygnanski, I. & Kit, E. 1985 Pulsating flow in a pipe. J. Fluid Mech. 153, 313337.CrossRefGoogle Scholar
Sundstrom, L.R. & Cervantes, M.J. 2018 a On the similarity of pulsating and accelerating turbulent pipe flows. Flow Turbul. Combust. 100 (2), 417436.CrossRefGoogle ScholarPubMed
Sundstrom, L.R.J. & Cervantes, M.J. 2018 b Characteristics of the wall shear stress in pulsating wall-bounded turbulent flows. Expl Therm. Fluid Sci. 96, 257265.CrossRefGoogle Scholar
Sundstrom, L.R.J. & Cervantes, M.J. 2018 c Laminar similarities between accelerating and decelerating turbulent flows. Intl J. Heat Fluid Flow 71, 1326.CrossRefGoogle Scholar
Sundstrom, L.R.J., Mulu, B.G. & Cervantes, M.J. 2016 Wall friction and velocity measurements in a double-frequency pulsating turbulent flow. J. Fluid Mech. 788, 521548.CrossRefGoogle Scholar
Tardu, F.S. & Binder, G. 1993 Wall shear stress modulation in unsteady turbulent channel flow with high imposed frequencies. Phys. Fluids A 5 (8), 20282037.CrossRefGoogle Scholar
Tardu, S.F., Binder, G. & Blackwelder, R.F. 1994 Turbulent channel flow with large-amplitude velocity oscillations. J. Fluid Mech. 267, 109151.CrossRefGoogle Scholar
Tu, S.W. & Ramaprian, B.R. 1983 Fully developed periodic turbulent pipe flow. Part 1. Main experimental results and comparison with predictions. J. Fluid Mech. 137, 3158.CrossRefGoogle Scholar
Weng, C., Boij, S. & Hanifi, A. 2013 The attenuation of sound by turbulence in internal flows. J. Acoust. Soc. Am. 133 (6), 37643776.CrossRefGoogle ScholarPubMed
Weng, C., Boij, S. & Hanifi, A. 2016 Numerical and theoretical investigation of pulsatile turbulent channel flows. J. Fluid Mech. 792, 98133.CrossRefGoogle Scholar
Wu, X. & Moin, P. 2008 A direct numerical simulation study on the mean velocity characteristics in turbulent pipe flow. J. Fluid Mech. 608, 81112.CrossRefGoogle Scholar
Xu, D. & Avila, M. 2018 The effect of pulsation frequency on transition in pulsatile pipe flow. J. Fluid Mech. 857, 937951.CrossRefGoogle Scholar
Xu, D., Song, B. & Avila, M. 2021 Non-modal transient growth of disturbances in pulsatile and oscillatory pipe flows. J. Fluid Mech. 907, R5.CrossRefGoogle Scholar
Xu, D., Varshney, A., Ma, X., Song, B., Riedl, M., Avila, M. & Hof, B. 2020 Nonlinear hydrodynamic instability and turbulence in pulsatile flow. Proc. Natl Acad. Sci. 117 (21), 1123311239.CrossRefGoogle ScholarPubMed
Xu, D., Warnecke, S., Song, B., Ma, X. & Hof, B. 2017 Transition to turbulence in pulsating pipe flow. J. Fluid Mech. 831, 418432.CrossRefGoogle Scholar
Yu, D. & Girimaji, S.S. 2006 Direct numerical simulations of homogeneous turbulence subject to periodic shear. J. Fluid Mech. 566, 117151.CrossRefGoogle Scholar
Zahtila, T., Lu, W., Chan, L. & Ooi, A. 2023 A systematic study of the grid requirements for a spectral element method solver. Comput. Fluids 251, 105745.CrossRefGoogle Scholar