Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-06-14T01:46:40.916Z Has data issue: false hasContentIssue false

A universal velocity transformation for boundary layers with pressure gradients

Published online by Cambridge University Press:  25 August 2023

Peng E.S. Chen*
Affiliation:
Department of Mechanics and Engineering Science, Peking University, Beijing 100871, PR China
Wen Wu
Affiliation:
Department of Mechanical Engineering, University of Mississippi, MS 38677, USA
Kevin P. Griffin
Affiliation:
Center for Turbulence Research, Stanford University, CA 94305, USA National Renewable Energy Laboratory, CO 80401, USA
Yipeng Shi
Affiliation:
Department of Mechanics and Engineering Science, Peking University, Beijing 100871, PR China
Xiang I.A. Yang
Affiliation:
Mechanical Engineering, Pennsylvania State University, PA 16802, USA
*
Email address for correspondence: chenpeng66@pku.edu.cn

Abstract

The logarithmic law of the wall does not capture the mean flow when a boundary layer is subjected to a strong pressure gradient. In such a boundary layer, the mean flow is affected by the spatio-temporal history of the imposed pressure gradient; and accounting for history effects remains a challenge. This work aims to develop a universal mean flow scaling for boundary layers subjected to arbitrary adverse or/and favourable pressure gradients. We derive from the Navier–Stokes equation a velocity transformation that accounts for the history effects and maps the mean flow to the canonical law of the wall. The transformation is tested against channel flows with a suddenly imposed adverse or favourable pressure gradient, boundary layer flows subjected to an adverse pressure gradient, and Couette–Poiseuille flows with a streamwise pressure gradient. It is found that the transformed velocity profiles follow closely the equilibrium law of the wall.

Type
JFM Papers
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, J. 2011 Fundamentals of Aerodynamics. McGraw Hill.Google Scholar
Aubertine, C.D. & Eaton, J.K. 2005 Turbulence development in a non-equilibrium turbulent boundary layer with mild adverse pressure gradient. J. Fluid Mech. 532, 345364.CrossRefGoogle Scholar
Bobke, A., Vinuesa, R., Örlü, R. & Schlatter, P. 2017 History effects and near equilibrium in adverse-pressure-gradient turbulent boundary layers. J. Fluid Mech. 820, 667692.CrossRefGoogle Scholar
Chung, Y.M. 2005 Unsteady turbulent flow with sudden pressure gradient changes. Intl J. Numer. Meth. Fluids 47 (8–9), 925930.CrossRefGoogle Scholar
Coleman, G.N., Garbaruk, A. & Spalart, P.R. 2015 Direct numerical simulation, theories and modelling of wall turbulence with a range of pressure gradients. Flow Turbul. Combust. 95, 261276.CrossRefGoogle Scholar
Coleman, G.N. & Spalart, P.R. 2015 Direct numerical simulation of turbulent Couette–Poiseuille flow with zero skin friction. In European Turbulence Conference 2015. Delft, The Netherlands.Google Scholar
Ding, L., Saxton-Fox, T., Hultmark, M. & Smits, A.J. 2019 Effects of pressure gradients and streamline curvature on the statistics of a turbulent pipe flow. In 11th International Symposium on Turbulence and Shear Flow Phenomena. TSFP 2019.Google Scholar
Galbraith, R.A.M.D., Sjolander, S. & Head, M.R. 1977 Mixing length in the wall region of turbulent boundary layers. Aeronaut. Q. 28, 97110.CrossRefGoogle Scholar
Graham, J., et al. 2016 A web services accessible database of turbulent channel flow and its use for testing a new integral wall model for LES. J. Turbul. 17, 181215.CrossRefGoogle Scholar
Griffin, K.P., Fu, L. & Moin, P. 2021 Velocity transformation for compressible wall-bounded turbulent flows with and without heat transfer. Proc. Natl Acad. Sci. USA 118, e2111144118.CrossRefGoogle ScholarPubMed
Harun, Z., Monty, J.P., Mathis, R. & Marusic, I. 2013 Pressure gradient effects on the large-scale structure of turbulent boundary layers. J. Fluid Mech. 715, 477498.CrossRefGoogle Scholar
He, S. & Seddighi, M. 2015 Transition of transient channel flow after a change in Reynolds number. J. Fluid Mech. 764, 395427.CrossRefGoogle Scholar
Huang, P.G. & Coleman, G.N. 1994 Van Driest transformation and compressible wall-bounded flows. AIAA J. 32, 21102113.CrossRefGoogle Scholar
Inoue, M., Pullin, D.I., Harun, Z. & Marusic, I. 2013 LES of the adverse-pressure gradient turbulent boundary layer. Intl J. Heat Fluid Flow 44, 293300.CrossRefGoogle Scholar
Johnstone, R., Coleman, G.N. & Spalart, P.R. 2010 The resilience of the logarithmic law to pressure gradients: evidence from direct numerical simulation. J. Fluid Mech. 643, 163175.CrossRefGoogle Scholar
Kawai, S. & Larsson, J. 2012 Wall-modeling in large eddy simulation: length scales, grid resolution, and accuracy. Phys. Fluids 24, 015105.CrossRefGoogle Scholar
Kim, J., Moin, P. & Moser, R. 1987 Turbulence statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech. 177, 133166.CrossRefGoogle Scholar
Kitsios, V., Sekimoto, A., Atkinson, C., Sillero, J.A., Borrell, G., Gungor, A.G., Jiménez, J. & Soria, J. 2017 Direct numerical simulation of a self-similar adverse pressure gradient turbulent boundary layer at the verge of separation. J. Fluid Mech. 829, 392419.CrossRefGoogle Scholar
Knopp, T., Reuther, N., Novara, M., Schanz, D., Schülein, E., Schröder, A. & Kähler, C.J. 2021 Experimental analysis of the log law at adverse pressure gradient. J. Fluid Mech. 918, A17.CrossRefGoogle Scholar
Lee, J.H. 2017 Large-scale motions in turbulent boundary layers subjected to adverse pressure gradients. J. Fluid Mech. 810, 323361.CrossRefGoogle Scholar
Lee, J.-H. & Sung, H.J. 2009 Structures in turbulent boundary layers subjected to adverse pressure gradients. J. Fluid Mech. 639, 101131.CrossRefGoogle Scholar
Lee, M. & Moser, R.D. 2015 Direct numerical simulation of turbulent channel flow up to $Re_\tau \approx 5200$. J. Fluid Mech. 774, 395415.CrossRefGoogle Scholar
Lozano-Durán, A., Giometto, M.G., Park, G.I. & Moin, P. 2020 Non-equilibrium three-dimensional boundary layers at moderate Reynolds numbers. J. Fluid Mech. 883, A20.CrossRefGoogle Scholar
Lozano-Durán, A. & Jiménez, J. 2014 Effect of the computational domain on direct simulations of turbulent channels up to $Re_\tau = 4200$. Phys. Fluids 26, 011702.CrossRefGoogle Scholar
Marusic, I., Monty, J.P., Hultmark, M. & Smits, A.J. 2013 On the logarithmic region in wall turbulence. J. Fluid Mech. 716, R3.CrossRefGoogle Scholar
Mathur, A., Gorji, S., He, S., Seddighi, M., Vardy, A.E., O'Donoghue, T. & Pokrajac, D. 2018 Temporal acceleration of a turbulent channel flow. J. Fluid Mech. 835, 471490.CrossRefGoogle Scholar
Mellor, G.L. & Gibson, D.M. 1966 Equilibrium turbulent boundary layers. J. Fluid Mech. 24, 225253.CrossRefGoogle Scholar
Modesti, D. & Pirozzoli, S. 2019 Direct numerical simulation of supersonic pipe flow at moderate Reynolds number. Intl J. Heat Fluid Flow 76, 100112.CrossRefGoogle Scholar
Modesti, D., Pirozzoli, S. & Grasso, F. 2019 Direct numerical simulation of developed compressible flow in square ducts. Intl J. Heat Fluid Flow 76, 130140.CrossRefGoogle Scholar
Monty, J.P., Harun, Z. & Marusic, I. 2011 A parametric study of adverse pressure gradient turbulent boundary layers. Intl J. Heat Fluid Flow 32, 575585.CrossRefGoogle Scholar
Monty, J.P., Hutchins, N., Ng, H.C.H., Marusic, I. & Chong, M.S. 2009 A comparison of turbulent pipe, channel and boundary layer flows. J. Fluid Mech. 632, 431442.CrossRefGoogle Scholar
Morrill-Winter, C., Philip, J. & Klewicki, J. 2017 An invariant representation of mean inertia: theoretical basis for a log law in turbulent boundary layers. J. Fluid Mech. 813, 594617.CrossRefGoogle Scholar
Nagib, H.M. & Chauhan, K.A. 2008 Variations of von Kármán coefficient in canonical flows. Phys. Fluids 20 (10), 101518.CrossRefGoogle Scholar
Nickels, T.B. 2004 Inner scaling for wall-bounded flows subject to large pressure gradients. J. Fluid Mech. 521, 217239.CrossRefGoogle Scholar
Parthasarathy, A. & Saxton-Fox, T. 2022 A novel experimental facility to impose unsteady pressure gradients on turbulent boundary layers. Exp. Fluids 63 (6), 114.CrossRefGoogle Scholar
Perry, A.E. 1966 Turbulent boundary layers in decreasing adverse pressure gradients. J. Fluid Mech. 26, 481506.CrossRefGoogle Scholar
Perry, A.E., Bell, J.B. & Joubert, P.N. 1966 Velocity and temperature profiles in adverse pressure gradient turbulent boundary layers. J. Fluid Mech. 25 (2), 299320.CrossRefGoogle Scholar
Perry, A.E., Marusic, I. & Jones, M.B. 1998 New evolution equations for turbulent boundary layers in arbitrary pressure gradients. Sadhana 23 (5), 443457.CrossRefGoogle Scholar
Perry, A.E., Marusic, I. & Jones, M.B. 2002 On the streamwise evolution of turbulent boundary layers in arbitrary pressure gradients. J. Fluid Mech. 461, 6191.CrossRefGoogle Scholar
Perry, A.E. & Schofield, W.H. 1973 Mean velocity and shear stress distributions in turbulent boundary layers. Phys. Fluids 16 (12), 20682074.CrossRefGoogle Scholar
Romero, S.K., Zimmerman, S.J., Philip, J. & Klewicki, J.C. 2022 a Stress equation based scaling framework for adverse pressure gradient turbulent boundary layers. Intl J. Heat Fluid Flow 93, 108885.CrossRefGoogle Scholar
Romero, S., Zimmerman, S., Philip, J., White, C. & Klewicki, J. 2022 b Properties of the inertial sublayer in adverse pressure-gradient turbulent boundary layers. J. Fluid Mech. 937, A30.CrossRefGoogle Scholar
Schlatter, P. & Örlü, R. 2010 Assessment of direct numerical simulation data of turbulent boundary layers. J. Fluid Mech. 659, 116126.CrossRefGoogle Scholar
Smits, A.J., McKeon, B.J. & Marusic, I. 2011 High-Reynolds number wall turbulence. Annu. Rev. Fluid Mech. 43, 353375.CrossRefGoogle Scholar
Spalart, P.R. & Watmuff, J.H. 1993 Experimental and numerical study of a turbulent boundary layer with pressure gradients. J. Fluid Mech. 249, 337371.CrossRefGoogle Scholar
Stratford, B.S. 1959 The prediction of separation of the turbulent boundary layer. J. Fluid Mech. 5 (1), 116.CrossRefGoogle Scholar
Subrahmanyam, M., Xu, Z., Cantwell, B. & Alonso, J.J. 2023 A new wall-stress model for large-eddy simulations. In AIAA SCITECH 2023 Forum, p. 0285. AIAA ARC.CrossRefGoogle Scholar
Subrahmanyam, M.A., Cantwell, B.J. & Alonso, J.J. 2022 A universal velocity profile for turbulent wall flows including adverse pressure gradient boundary layers. J. Fluid Mech. 933, A16.CrossRefGoogle Scholar
Townsend, A.A. 1956 The properties of equilibrium boundary layers. J. Fluid Mech. 1, 561573.CrossRefGoogle Scholar
Trettel, A. & Larsson, J. 2016 Mean velocity scaling for compressible wall turbulence with heat transfer. Phys. Fluids 28, 026102.CrossRefGoogle Scholar
Van Driest, E.R. 1951 Turbulent boundary layer in compressible fluids. J. Aeronaut. Sci. 18 (3), 145160.CrossRefGoogle Scholar
Van Driest, E.R. 1956 On turbulent flow near a wall. J. Aeronaut. Sci. 23 (11), 10071011.CrossRefGoogle Scholar
Volino, R.J. 2020 Non-equilibrium development in turbulent boundary layers with changing pressure gradients. J. Fluid Mech. 897, A2.CrossRefGoogle Scholar
Volpiani, P.S., Iyer, P.S., Pirozzoli, S. & Larsson, J. 2020 Data-driven compressibility transformation for turbulent wall layers. Phys. Rev. Fluids 5 (5), 052602.CrossRefGoogle Scholar
Wei, T., Fife, P. & Klewicki, J. 2007 On scaling the mean momentum balance and its solutions in turbulent Couette–Poiseuille flow. J. Fluid Mech. 573, 371398.CrossRefGoogle Scholar
Wei, T., Maciel, Y. & Klewicki, J. 2017 Integral analysis of boundary layer flows with pressure gradient. Phys. Rev. Fluids 2 (9), 092601.CrossRefGoogle Scholar
Yang, X.I.A., Hong, J., Lee, M. & Huang, X.L.D. 2021 Grid resolution requirement for resolving rare and high intensity wall-shear stress events in direct numerical simulations. Phys. Rev. Fluids 6, 054603.CrossRefGoogle Scholar
Yang, X.I.A. & Lv, Y. 2018 A semi-locally scaled eddy viscosity formulation for LES wall models and flows at high speeds. Theor. Comput. Fluid Dyn. 32, 617627.CrossRefGoogle Scholar