Hostname: page-component-848d4c4894-x5gtn Total loading time: 0 Render date: 2024-06-02T21:14:40.563Z Has data issue: false hasContentIssue false

The complete mitochondrial genome of Pseudanoplocephala crawfordi and a comparison with closely related cestode species

Published online by Cambridge University Press:  17 September 2015

G.H. Zhao
Affiliation:
College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province712100, PR China
H.B. Wang
Affiliation:
College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province712100, PR China
Y.Q. Jia
Affiliation:
College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province712100, PR China
W. Zhao
Affiliation:
College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province712100, PR China
X.F. Hu
Affiliation:
College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province712100, PR China
S.K. Yu*
Affiliation:
College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province712100, PR China
G.H. Liu*
Affiliation:
State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province730046, PR China
*
*Fax: +86 29 87081762 E-mails: yusanke15@sohu.com (S.K. Yu); E-mail: liuguohua5202008@163.com (G.H. Liu)
*Fax: +86 29 87081762 E-mails: yusanke15@sohu.com (S.K. Yu); E-mail: liuguohua5202008@163.com (G.H. Liu)

Abstract

Pseudanoplocephala crawfordi is an important zoonotic cestode of economic significance and public health concern. In spite of its significance as a pathogen, the systematics, genetics, epidemiology and biology of this parasite remain poorly understood. In the present study, we sequenced and characterized the complete mitochondrial (mt) genome of P. crawfordi, which is 14,192 bp long and encodes 36 genes, including 12 protein-coding genes, 22 transfer RNA genes and two ribosomal RNA genes. Phylogenetic analysis of the concatenated amino acid sequences using the Bayesian inference (BI) method showed that P. crawfordi was closely related to the family Hymenolepididae. Considering that the taxonomic status of P. crawfordi has been controversial when based only on morphological features, the mt genome obtained here will provide novel molecular markers to ascertain the phylogenetic position of this parasite accurately.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Burger, T.D., Shao, R., Beati, L., Miller, H. & Barker, S.C. (2012) Phylogenetic analysis of ticks (Acari: Ixodida) using mitochondrial genomes and nuclear rRNA genes indicates that the genus Amblyomma is polyphyletic. Molecular Phylogenetics and Evolution 64, 4555.Google Scholar
Burger, T.D., Shao, R. & Barker, S.C. (2014) Phylogenetic analysis of mitochondrial genome sequences indicates that the cattle tick, Rhipicephalus (Boophilus) microplus, contains a cryptic species. Molecular Phylogenetics and Evolution 76, 241253.Google Scholar
Burland, T.G. (2000) DNASTAR's Lasergene sequence analysis software. Methods in Molecular Biology 132, 7191.Google Scholar
Gasser, R.B., Bott, N.J., Chilton, N.B., Hunt, P. & Beveridge, I. (2008) Toward practical, DNA-based diagnostic methods for parasitic nematodes of livestock – bionomic and biotechnological implications. Biotechnology Advances 26, 325334.Google Scholar
Han, L.F., Yan, W.C., Wang, T.Q., Wu, L. & Wang, P.L. (2012) Preparation of stained specimens for the adult of Pseudanoplocephala crawfordi and structural observation. Chinese Agricultural Science Bulletin 28, 248252 (in Chinese).Google Scholar
Hassanin, A., Léger, N. & Deutsch, J. (2005) Evidence for multiple reversals of asymmetric mutational constraints during the evolution of the mitochondrial genome of metazoa, and consequences for phylogenetic inferences. Systematic Biology 54, 277298.Google Scholar
Hatsushika, R., Shimizu, M., Kawakami, S. & Sawada, I. (1978) On a new species of the genus Pseudanoplocephala Baylis, 1927 (Cestoda: Anoplocephalidae) from the wild boar in Japan. Japanese Journal of Parasitology 27, 535542.Google Scholar
Hu, M. & Gasser, R.B. (2006) Mitochondrial genomes of parasitic nematodes – progress and perspectives. Trends in Parasitology 22, 7884.Google Scholar
Jia, W.Z., Yan, H.B., Guo, A.J., Zhu, X.Q., Wang, Y.C., Shi, W.G., Chen, H.T., Zhan, F., Zhang, S.H., Fu, B.Q., Littlewood, D.T. & Cai, X.P. (2010) Complete mitochondrial genomes of Taenia multiceps, T. hydatigena and T. pisiformis: additional molecular markers for a tapeworm genus of human and animal health significance. BMC Genomics 11, 447.Google Scholar
Jia, W., Yan, H., Lou, Z., Ni, X., Dyachenko, V., Li, H. & Littlewood, D.T. (2012) Mitochondrial genes and genomes support a cryptic species of tapeworm within Taenia taeniaeformis . Acta Tropica 123, 154163.CrossRefGoogle ScholarPubMed
Jia, Y.Q., Yan, W.C., Du, S.Z., Song, J.K., Zhao, W., Zhao, Y.X., Cheng, W.Y. & Zhao, G.H. (2014) Pseudanoplocephala crawfordi is a member of genus Hymenolepis based on phylogenetic analysis using ribosomal and mitochondrial DNA sequences. Mitochondrial DNA 11, 15.Google Scholar
Jiang, T.J., Cui, C.Q., Jing, Z.H. & Wu, H. (1986) A morphological and taxonomic exploration on zoonotic Pseudanoplocephala cestode in county, Liaoning province. Journal of Medical Science Yanbian University 9, 193205 (in Chinese).Google Scholar
Jiang, T.J., Jin, Z.H., Wu, H. & Cui, C.Q. (1990) A study on the life-cycle and epidemiology of Pseudanoplocephala crawfordi Baylis, 1927. Journal of Helminthology 64, 5461.Google Scholar
Larkin, M.A., Blackshields, G., Brown, N.P., Chenna, R., McGettigan, P.A., McWilliam, H., Valentin, F., Wallace, I.M., Wilm, A., Lopez, R., Thompson, J.D., Gibson, T.J. & Higgins, D.G. (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23, 29472948.Google Scholar
Laslett, D. & Canbäck, B. (2008) ARWEN: a program to detect tRNA genes in metazoan mitochondrial nucleotide sequences. Bioinformatics 24, 172175.Google Scholar
Li, G., Zhang, Y.S. & Wei, H.Q. (1982) The life history and taxonomy of Pseudanoplocephala crawfordi Baylis (1927). Chinese Journal of Animal and Veterinary Sciences 13, 173179 (in Chinese).Google Scholar
Li, M.W., Lin, R.Q., Song, H.Q., Wu, X.Y. & Zhu, X.Q. (2008) The complete mitochondrial genomes for three Toxocara species of human and animal health significance. BMC Genomics 9, 224.Google Scholar
Liang, L.Q. & Zheng, Z.M. (1963) Note on a new tapeworm Hsuolepis shensiensis sp. nov. (cestoda: Hymenolepididae) from swine in Shensi province, China, and a revision of genus Hsuolepis Yang, Zhan and Chen, 1957. Acta Zoological Sinica 15, 211216 (in Chinese).Google Scholar
Lin, R.Q., Qiu, L.L., Liu, G.H., Wu, X.Y., Weng, Y.B., Xie, W.Q., Hou, J., Pan, H., Yuan, Z.G., Zou, F.C., Hu, M. & Zhu, X.Q. (2011) Characterization of the complete mitochondrial genomes of five Eimeria species from domestic chickens. Gene 480, 2833.Google Scholar
Liu, G.H., Lin, R.Q., Li, M.W., Liu, W., Liu, Y., Yuan, Z.G., Song, H.Q., Zhao, G.H., Zhang, K.X. & Zhu, X.Q. (2011) The complete mitochondrial genomes of three cestode species of Taenia infecting animals and humans. Molecular Biology Reports 38, 22492256.Google Scholar
Liu, G.H., Gasser, R.B., Su, A., Nejsum, P., Peng, L., Lin, R.Q., Li, M.W., Xu, M.J. & Zhu, X.Q. (2012a) Clear genetic distinctiveness between human- and pig-derived Trichuris based on analyses of mitochondrial datasets. PLoS Neglected Tropical Diseases 6, e1539.CrossRefGoogle ScholarPubMed
Liu, G.H., Li, C., Li, J.Y., Zhou, D.H., Xiong, R.C., Lin, R.Q., Zou, F.C. & Zhu, X.Q. (2012b) Characterization of the complete mitochondrial genome sequence of Spirometra erinaceieuropaei (Cestoda: Diphyllobothriidae) from China. International Journal of Biological Sciences 8, 640649.CrossRefGoogle ScholarPubMed
Liu, G.H., Chen, F., Chen, Y.Z., Song, H.Q., Lin, R.Q., Zhou, D.H. & Zhu, X.Q. (2013) Complete mitochondrial genome sequence data provides genetic evidence that the brown dog tick Rhipicephalus sanguineus (Acari: Ixodidae) represents a species complex. International Journal of Biological Sciences 9, 361369.Google Scholar
Nakao, M., Yokoyama, N., Sako, Y., Fukunaga, M. & Ito, A. (2002) The complete mitochondrial DNA sequence of the cestode Echinococcus multilocularis (Cyclophyllidea: Taeniidae). Mitochondrion 1, 497509.Google Scholar
Nakao, M., Abmed, D., Yamasaki, H. & Ito, A. (2007) Mitochondrial genomes of the human broad tapeworms Diphyllobothrium latum and Diphyllobothrium nihonkaiense (Cestoda: Diphyllobothriidae). Parasitology Research 101, 233236.Google Scholar
Ojala, D., Merkel, C., Gelfand, R. & Attardi, G. (1980) The tRNA genes punctuate the reading of genetic information in human mitochondrial DNA. Cell 22, 393403.CrossRefGoogle ScholarPubMed
Page, R.D. (1996) TreeView: an application to display phylogenetic trees on personal computers. Computer Applications in the Biosciences 12, 357358.Google Scholar
Perna, N.T. & Kocher, T.D. (1995) Patterns of nucleotide composition at fourfold degenerate site of animal mitochondrial genomes. Journal of Molecular Evolution 41, 353358.Google Scholar
Ronquist, F. & Huelsenbeck, J.P. (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 15721574.Google Scholar
Swofford, D.L. (2002) PAUP* Phylogenetic analysis using parsimony (*and other methods). Sunderland, Massachusetts, Sinauer Associates.Google Scholar
Talavera, G. & Castresana, J. (2007) Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Systematic Biology 56, 564577.CrossRefGoogle ScholarPubMed
Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M. & Kumar, S. (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution 28, 27312739.Google Scholar
von Nickisch-Rosenegk, M., Brown, W.M. & Boore, J.L. (2001) Complete sequence of the mitochondrial genome of the tapeworm Hymenolepis diminuta: gene arrangements indicate that platyhelminths are eutrochozoans. Molecular Biology and Evolution 18, 721730.Google Scholar
Wang, M. (2002) Veterinary parasitology. 3rd edn. Beijing, China, Agriculture Press.Google Scholar
Wang, Y., Wang, C.R., Zhao, G.H., Gao, J.F., Li, M.W. & Zhu, X.Q. (2011) The complete mitochondrial genome of Orientobilharzia turkestanicum supports its affinity with African Schistosoma spp. Infection, Genetics and Evolution 11, 19641970.Google Scholar
Wolstenholme, D.R. (1992) Animal mitochondrial DNA: structure and evolution. International Review of Cytology 141, 173216.Google Scholar
Yang, P., Zhai, X.G. & Chen, G.S. (1957) A new adult cestode, Hsuolepis shengi nov. gen. sp. collected from domestic pig, Kansu Province, China. Acta Microbiological Sinica 5, 361367 (in Chinese).Google Scholar
Yang, Y.R., Rosenzvit, M.C., Zhang, L.H., Zhang, J.Z. & McManus, D.P. (2005) Molecular study of Echinococcus in west-central China. Parasitology 131, 547555.Google Scholar
Zhao, G.H., Li, J., Blair, D., Li, X.Y., Elsheikha, H.M., Lin, R.Q., Zou, F.C. & Zhu, X.Q. (2012) Biotechnological advances in the diagnosis, species differentiation and phylogenetic analysis of Schistosoma spp. Biotechnology Advances 30, 13811389.Google Scholar
Zhao, G.H., Jia, Y.Q., Cheng, W.Y., Zhao, W., Bian, Q.Q. & Liu, G.H. (2014) Characterization of the complete mitochondrial genomes of Nematodirus oiratianus and Nematodirus spathiger of small ruminants. Parasites & Vectors 7, 319.Google Scholar