Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-06-01T22:26:18.027Z Has data issue: false hasContentIssue false

Effects of glycine–metal compounds on Ascaridia galli-infected chickens expressed by a kinetic model

Published online by Cambridge University Press:  12 April 2024

M. Gabrashanska
Affiliation:
Institute for Experimental Pathology and Parasitology, Bulgarian Academy of Sciences, Acad. G. Bonchev str., bl. 25, 1113, Sofia, Bulgaria
S.E. Teodorova*
Affiliation:
Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, 72, Tzarigradsko shaussee, 1784, Sofia, Bulgaria
M. Galvez-Morros
Affiliation:
Departamento de Patologia, Facultad de Veterinaria, Universidad Complutense, Carreterade Puerto de Hierro s/n, 28040, Madrid, Spain
M. Mitov
Affiliation:
Institute for Experimental Pathology and Parasitology, Bulgarian Academy of Sciences, Acad. G. Bonchev str., bl. 25, 1113, Sofia, Bulgaria
*
*Author for correspondence Fax: +359 2 975 3619 Email: seteodor@tea.bg

Abstract

The biogenic elements zinc, manganese and cobalt are essential for metabolic processes in animals. Compounds of nGly.Me2+A. mH2O (Me2+=Zn2+, Mn2+, Co2+; A=Cl, SO42−, n=1, 2; m=2, 5), as supplements in the diet, were used separately on different experimental groups of male Hisex chickens to correct the mineral deficiency caused by Ascaridia galli infections. An amelioration of body weight gain, reduction of mortality and restoration of trace element levels were estimated in infected chickens. A mathematical model has been proposed for A. galli population kinetics in chickens, taking into account the stimulating effect of these elements on the nematodes. The model parameters are considered as phenomenological constants of the host–parasite system. An agreement with experimental data is observed using, for the parameters ψ, α, μ and μs, values equal to those calculated in previously investigated A. galli–chicken systems. For parameter ν (immunological constant) the same value was obtained as in a previous experiment with high infection. This model is likely to be suitable for a range of host–nematode systems, including varying degrees of infection and treatment with different trace elements.

Type
Review Article
Copyright
Copyright © Cambridge University Press 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ackert, G. (1942) Natural resistance to helminthic infection. Journal of Parasitology 28, 114.CrossRefGoogle Scholar
Anon., (1982) Analytical methods for atomic absorption spectrophotometry. Norwalk, Connecticut, Perkin-Elmer Corp.Google Scholar
Aoyagi, S. & Baker, D. (1993) Nutritional evaluation of copper–lysine and zinc–lysine complexes for chicks. Poultry Science 72, 165171.CrossRefGoogle ScholarPubMed
Baker, D.H., Odle, J., Funk, M.A. & Wieland, T.M. (1991) Bioavailability of copper in cupric oxide, cuprous oxide and in a copper–lysine complex. Poultry Science 70, 177179.CrossRefGoogle Scholar
Balarew, C., Spasov, V. & Tepavitcharova, S. (1994) Pyro- and ferro electric, properties of nGly.Me 2+ .Cl 2 .2H 2 O (Me 2+ =Mn 2+ Co 2+ ; n=1, 2). Ferroelectrics 158, 157162.CrossRefGoogle Scholar
Balayan, D.E. (1982) On the effect of helminthoses on the content of microelements (copper, molybdenum, manganese, iron, zinc) in tissues and organs of sheep. Zoological Papers, XVIII 46, 245257 (in Russian).Google Scholar
Bell, D. & Freeman, B. (1971) Physiology and biochemistry of the domestic fowl. Vol. 1, 601 pp. London, New York, Academic Press.Google Scholar
Berenschtein, F. (1968) Microelements, biological role and their importance for stock-breeding. pp. 45180. Kiev, Urogai.Google Scholar
Black, J., Ammerman, C., Henry, P. & Miles, R. (1984) Biological availability of manganese sources and effect of high dietary manganese on tissue mineral composition of broiler-type chicks. Poultry Science 63, 19992006.CrossRefGoogle ScholarPubMed
Bykoryukov, A. & Tachistov, B. (1965) A study of early development stages of Ascaridia galli in chickens. pp. 257265 in Vsesojusnij Nauchnoissledovatelskij Institute of Birds Diseases (Eds) Sbornik Trudov ‘Birds Diseases’. Part I. Leningrad, Kolos (in Russian).Google Scholar
Davtyan, E.A. (1977) Some aspects of helminthose pathogenesis of contemporary representative. Zoology Book XVII, 510.Google Scholar
Deshmukh, R.R. (2001) Trace elements in health and diseases and their nutritional importance in maintenance of good health. pp. 10081017 in Third International Symposium on trace elements in humans new perspectives. Athens, Greece, 4–6 October 2001.Google Scholar
Duncan, D.B. (1955) Multiple range and multiple F tests. Biometrics 11, 142.CrossRefGoogle Scholar
Flachowsky, G. (1997) Bewertung organischer Spurenelement Verbindungen in der Tierernahrung. Mengenund Spurenelemente. 17, Arbeitstagung, Jena, 599629.Google Scholar
Gabrashanska, M. & Timanova, A. (1995) Assesment of copper and zinc levels in Ascaridia galli-infected chickens with and without supplementation of Cu–Zn mixed basic salts. p. 203 in Seventh International Symposium of Helminthology. Kosice, Slovak Republic, September 19–22. Google Scholar
Gabrashanska, M., Daskalova, A. & Ossikowski, E. (1987) Comparative investigations on the microelement status of Ascaridia galli (Schrank, 1788; Freeborn, 1923) and its host Gallus gallus . Helminthologia 24, 209214.Google Scholar
Gabrashanska, M., Galvez-Morros, M., Garcia-Martinez, O. (1993) Application of small doses of copper salts (basic and neutral) to Ascaridia galli -infected chicks. Journal of Helminthology 67, 287290.CrossRefGoogle ScholarPubMed
Gabrashanska, M., Teodorova, S., Galvez-Morros, M., Garcia-Martinez, O. (1999a) A kinetic model for Ascaridia galli populations in chickens treated with mixed salts of copper and zinc. Journal of Helminthology 73, 4550.CrossRefGoogle ScholarPubMed
Gabrashanska, M., Tepavitcharova, S., Balarew, C., Galvez-Morros, M.M. & Arambarri, P. (1999b) The effect of excess dietary manganese on uninfected and Ascaridia galli infected chicks. Journal of Helminthology 73, 313316.CrossRefGoogle ScholarPubMed
Gabrashanska, M., Tepavitcharova, S., Galvez-Morros, M. & Mitov, M. (2001) Investigation of the effect of cobalt compounds on uninfected and infected with Ascaridia galli chicks. Experimental Pathology and Parasitology 4,(7): 2632.Google Scholar
Gabrashanska, M., Teodorova, S.E. & Mitov, M. (2002a) The effect of cobalt compounds on uninfected and Ascaridia galli -infected chickens: a kinetic model for Ascaridia galli populations and chicken growth. Journal of Helminthology 76, 303310.CrossRefGoogle ScholarPubMed
Gabrashanska, M., Tsocheva-Gaytandzhieva, N., Tepavitcharova, S. & Galvez-Morros, M. (2002b) Therapeutic effect of nGly.Me2+ A.mH2 O (Me2+ = Mn2+ , Co2+ , Zn2+ ; A=Cl? , SO4 2? , n=1; m=0, 2, 5) compounds on helminthiases. p. 124 in Tenth ISSP and Workshop ‘Solubility phenomena - application for environmental improvement’, 21–24 July. Varna, Bulgaria.Google Scholar
Galvez-Morros, M., Gabrashanska, M., Lopez-Galvez, D., Garcia-Martinez, O. (1995) Comparison of the effects of basic and neutral zinc salts on chicks infected with Ascaridia galli . Veterinary Parasitology 56, 199205.CrossRefGoogle ScholarPubMed
Goyer, R.A. (1996) Toxic effects of metals. pp. 691735 in Casarett, Doull (Eds) Toxicology. The basic science of poisons. 5th edn. New York, McGraw-Hill.Google Scholar
Kincaid, R., Willer, W., Jensen, L. & Hampton, V. (1976) Effect of high amount of dietary zinc and age upon tissue zinc in young chicks. Poultry Science 55, 19541960.CrossRefGoogle ScholarPubMed
Kratzer, F. & Vohra, P. (1986) Chelates in nutrition. 184 pp. Boca Raton, CRC Press Inc.Google Scholar
Permin, A., Pearman, M., Wansen, P., Bisgaard, M.F. & Frandsen, F. (1997) On investigation in different media for embryonation of Ascaridia galli eggs. Helminthologia 34, 7579.Google Scholar
Popoff, M. (1931) Die Zellstimulation. Berlin.Google Scholar
Smith, M., Sherman, J., Miller, L., Robbins, K. & Halley, J. (1995) Relative biological availability of manganese from manganese proteinate, manganese sulfate and manganese monoxide in broilers reared in elevated temperatures. Poultry Science 74, 702707.CrossRefGoogle ScholarPubMed
Southern, L.L. & Baker, D.H. (1978) Zinc toxicity, zinc deficiency and Zn–Cu relationship in Eimeria acervulina -infected chicks. Journal of Nutrition 112, 23532359.CrossRefGoogle Scholar
Southern, L.L. & Baker, D.H. (1981) The effect of methionine or cysteine on cobalt toxicity in chicks. Poultry Science 60, 13031308.CrossRefGoogle ScholarPubMed
Steel, R. & Torrie, J. (1980) Principles and procedures in statistics: a biometric approach. 2nd edn. 633 pp. New York, McGraw-Hill Book Co.Google Scholar
Teodorova, S.E. & Gabrashanska, M. (2002) Optimal treatment of Ascaridia galli-infected chickens with salts of trace elements and a kinetic model for chicken growth. Journal of Helminthology 76, 7985.CrossRefGoogle Scholar
US National Research Council, (1994) Nutrient requirements of poultry. 9th rev. edn. 155 pp. Washington, DC, National Academy Press.Google Scholar
Vassilev, I., Ossikowski, E., Bozhkov, S., Kamburov, P., Bankov, I. & Rupova, L. (1973) Contributions of pathogenesis of chicken ascaridiosis. Bulletin of the Central Helminthological Laboratory 16, 4358.Google Scholar
Watson, H.T., Ammerman, C., Miller, M.S. & Harms, R.H. (1970) Biological assay of inorganic manganese for chicks. Poultry Sciences 49, 15481554.CrossRefGoogle Scholar
Wedekind, K. & Baker, D. (1990) Zinc bioavailability in feedgrade sources of zinc. Journal of Animal Science 68, 684689.CrossRefGoogle ScholarPubMed