Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-06-07T02:21:12.463Z Has data issue: false hasContentIssue false

Tetrathyridia in an endemic lizard from Chile: molecular evidence for South America

Published online by Cambridge University Press:  29 June 2023

J. P. Correa
Affiliation:
Facultad de Ciencias de la Naturaleza, Universidad San Sebastián, Concepción, Chile
F. Farías
Affiliation:
Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
E. San Juan
Affiliation:
Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
A. Yáñez-Meza
Affiliation:
Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
S. Muñoz-Leal
Affiliation:
Departamento de Ciencia Animal, Facultad de Ciencias Veterinarias, Universidad de Concepción, Chillán, Chile
C. Botto-Mahan
Affiliation:
Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
P. Oyarzún-Ruiz*
Affiliation:
Departamento de Patología y Medicina Preventiva, Facultad de Ciencias Veterinarias, Universidad de Concepción, Chillán, Chile
*
Corresponding author: P. Oyarzún-Ruiz; Email: pablooyarzunruiz@gmail.com

Abstract

Mesocestoides is a controversial tapeworm with significant lack of data related to systematics and life cycles. This helminth has an indirect life cycle with vertebrates, mostly carnivorous mammals, as definitive hosts. Theoretically, a coprophagous arthropod would be the first intermediate host, and herptiles, mammals, and birds, which prey on these insects, would represent the second intermediate hosts. However, recent evidence suggests that this life cycle would require only two hosts, with no arthropods involved. In the Neotropics, although there are records of mammals and reptiles as hosts for Mescocestoides, no molecular analyses have been performed. This work aimed to record an additional intermediate host and molecularly characterize the isolated larvae. Thus, 18 braided tree iguanas (Liolaemus platei) from Northern Chile were collected and dissected during 2019. One lizard was parasitized by three morphotypes of larvae compatible with tetrathyridia of Mescocestoides. To achieve its specific identity, a molecular approach was performed: 18S rRNA and 12S rRNA loci were amplified through cPCR. The inferred phylogenies confirmed the morphological diagnosis and stated that all morphotypes were conspecifics. The sequences for both loci formed a monophyletic clade with high nodal support, representing a sister taxon to Mescocestoides clade C. This study represents the first molecular characterization of any taxon of Mescocestoides from the Neotropics. Future surveys from potential definitive hosts would help to elucidate its life cycle. Furthermore, an integrative taxonomic approach is required in additional studies from the Neotropical region, which would contribute to a better understanding of the evolutionary relationships of this genus.

Type
Short Communication
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Angulo-Tisoc, JM, Curie, JIP, Gomez-Puerta, LA (2020). Ocurrencia de Mesocestoides sp. (Cestoda: Mesocestoididae) en el zorro andino (Lycalopex culpaeus). Revista Peruana de Biología 27, 2, 233236. http://doi.org/10.15381/rpb.v27i2.17879CrossRefGoogle Scholar
Berrilli, E, Simbula, G (2020). First molecular identification of the tapeworm Mesocestoides litteratus from an Italian wall lizard (Podarcis siculus). Infection, Genetics and Evolution 81, 104233. https://doi.org/10.1016/j.meegid.2020.104233CrossRefGoogle ScholarPubMed
Bursey, CR, Goldberg, SR, Telford, SR Jr, Vitt, LJ (2012). Metazoan endoparasites of 13 species of Central American anoles (Sauria: Polychrotidae: Anolis) with a review of the helminth communities of Caribbean, Mexican, North American, and South American anoles. Comparative Parasitology 79, 1, 75132. https://doi.org/10.1654/4530.1CrossRefGoogle Scholar
Crosbie, PR, Nadler, SA, Platzer, EG, Kerner, C, Mariaux, J, Boyce, WM (2000). Molecular systematics of Mesocestoides spp. (Cestoda: Mesocestoididae) from domestic dogs (Canis familiaris) and coyotes (Canis latrans). Journal of Parasitology 86, 2, 350357. https://doi.org/10.1645/0022-3395(2000)086[0350:MSOMSC]2.0.CO;2CrossRefGoogle ScholarPubMed
Fugassa, MH (2020). Updated checklist of helminths found in terrestrial mammals of Argentine Patagonia. Journal of Helminthology 94, e170. https://doi.org/10.1017/S0022149X20000462CrossRefGoogle ScholarPubMed
García, NE, Monachesi, MRR, Paz, MM (2015). Primer registro de Mesocestoides sp. (Ciclophyllidea: Cestoda) en dos hembras de Diplolaemus leopardinus (Werner, 1898). Cuadernos de Herpetología 29, 1, 8183.Google Scholar
Hall, BG (2018). Phylogenetic trees made easy A how-to manual. Fifth ed. 352 pp. New York: Oxford University Press.Google Scholar
Hamann, MI, Kehr, AI, González, CE (2014). Helminth community structure in the Argentinean bufonid Melanophryniscus klappenbachi: importance of habitat use and season. Parasitology Research 113, 10, 36393649. https://doi.org/10.1007/s00436-014-4029-zCrossRefGoogle ScholarPubMed
Hamann, M, González, C (2015). Helminth parasites in the toad Rhinella major (Bufonidae) from Chaco region, Argentina. Acta Herpetologica 10, 2, 93101. https://doi.org/10.13128/Acta_Herpetol-16150Google Scholar
Jesudoss Chelladurai, JRJ, Brewer, MT (2021). Global prevalence of Mesocestoides infections in animals – a systematic review and meta-analysis. Veterinary Parasitology 298, 109537. https://doi.org/10.1016/j.vetpar.2021.109537CrossRefGoogle ScholarPubMed
Justo, MCN, Fernandes, BMM, Cárdenas, MQ, Cohen, SC (2017). Checklist of Brazilian Cestoda. Neotropical Helminthology 11, 1, 187282.Google Scholar
Kubečka, BW, Traub, NJ, Tkach, VV, Shirley, TR, Rollins, D, Fedynich, A (2018). Mesocestoides sp. in wild Northern bobwhite (Colinus virginianus) and Scaled quail (Callipepla squamata). Journal of Wildlife Disease 54, 3, 612616. https://doi.org/10.7589/2017-11-275CrossRefGoogle ScholarPubMed
Kumar, S, Stecher, G, Tamura, K (2016). MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution 33, 7, 18701874. https://doi.org/10.1093/molbev/msw054CrossRefGoogle ScholarPubMed
Lutz, HL, Tkach, VV, Weckstein, JD (2017). Methods for specimen-based studies of avian symbionts. pp 157183 in: Webster, M.S. (Ed) The Extended Specimen: Emerging Frontiers in Collections-based Ornithological Research. Boca Raton: CRC Press.Google Scholar
Mata, R, Castañeda, AN, García, EA, Honey, MB, Mendoza, MB, Cervantes, IC (2017). Sistemática Molecular y Bioinformática. Guía Práctica. 496 pp. Ciudad de México: Universidad Nacional Autónoma de México.Google Scholar
McAllister, CT, Tkach, VV, Conn, DB. (2018). Morphological and molecular characterization of post-larval pre-tetrathyridia of Mesocestoides sp. (Cestoda: Cyclophyllidea) from ground skink, Scincella lateralis (Sauria: Scincidae), from Southerneastern Oklahoma. Journal of Parasitology 104, 3, 246253. https://doi.org/10.1645/17-178CrossRefGoogle Scholar
Mella, JE (2017). Guía de Campo de Reptiles de Chile. Tomo 2: Zona Norte. 316 pp. Santiago: Asociación Red Chilena de Herpetología.Google Scholar
Oyarzún-Ruiz, P, Di Cataldo, S, Cevidanes, A, Millán, J, González-Acuña, D (2020). Endoparasitic fauna of two South American foxes in Chile: Lycalopex culpaeus and Lycalopex griseus. Brazilian Journal of Veterinary Parasitology 29, 3, e006220. https://doi.org/10.1590/S1984-29612020055Google ScholarPubMed
Oyarzún-Ruiz, P, Thomas, R, Santodomingo, A, Collado, G, Muñoz, P, Moreno, L (2022). Morphological, behavioral, and molecular characterization of avian schistosomes (Digenea: Schistosomatidae) in the native snail Chilina dombeyana (Chilinidae) from Southern Chile. Pathogens 11, 3, 332. https://doi.org/10.3390/pathogens11030332CrossRefGoogle ScholarPubMed
Padgett, KA, Boyce, WM (2004). Life-history studies on two molecular strains of Mesocestoides (Cestoda mesocestoididae) identification of sylvatic hosts and infectivity of immature life stages. Journal of Parasitology 90, 1, 108113. https://doi.org/10.1645/GE-100R1CrossRefGoogle ScholarPubMed
Padgett, KA, Nadler, SA, Munson, L, Sacks, B, Boyce, WM (2005). Systematics of Mesocestoides (Cestoda: Mesocestoididae): evaluation of molecular and morphological variation among isolates. Journal of Parasitology 91, 6, 14351443. https://doi.org/10.1645/GE-3461.1CrossRefGoogle ScholarPubMed
San-Martín-Órdenes, J, Muñoz-Leal, S, Garín, CF, González-Acuña, D (2019). A systematic review of parasites and micropredators of non-avian reptiles (Reptilia=Sauropsida) in Chile. Zootaxa 4543, 3, 301340. https://doi.org/10.11646/zootaxa.4543.3.1CrossRefGoogle ScholarPubMed
Santodomingo, A, Robbiano, S, Thomas, R, Parragué-Migone, C, Cabello-Stom, J, Vera-Otarola, F, Valencia-Soto, C, Moreira-Arce, D, Moreno, L, Hidalgo-Hermoso, E, Muñoz-Leal, S (2022). A search for piroplasmids and spirochetes in threatened pudu (Pudu puda) and associated ticks from Southern Chile unveils a novel Babesia sp. and a variant of Borrelia chilensis. Transboundary and Emerging Diseases 69, 6, 37373748. https://doi.org/10.1111/tbed.14743CrossRefGoogle Scholar
Skirnisson, K, Jouet, D, Ferté, H, Nielsen, ÓK (2016a). Occurrence of Mesocestoides canislagopodis (Rudolphi, 1810) (Krabbe, 1865) in mammals and birds in Iceland and its molecular discrimination within the Mesocestoides species complex. Parasitology Research 115, 7, 25972607. https://doi.org/10.1007/s00436-016-5006-5CrossRefGoogle ScholarPubMed
Skirnisson, K, Sigurðardóttir, ÓG, Nielsen, ÓK (2016b). Morphological characteristics of Mesocestoides canislagopodis (Krabbe 1865) tetrathyridia found in rock ptarmigan (Lagopus muta) in Iceland. Parasitology Research 115, 8, 30993106. https://doi.org/10.1007/s00436-016-5065-7CrossRefGoogle Scholar
Supplementary material: File

Correa et al. supplementary material

Correa et al. supplementary material

Download Correa et al. supplementary material(File)
File 34.2 MB