Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-05-30T15:19:48.471Z Has data issue: false hasContentIssue false

Unveiling the Intricacies of the Inner Ear Anatomy: Novel 3D-Printed Model for Detailed Visualization and Functional Demonstrations

Published online by Cambridge University Press:  11 March 2024

Shou-Wu Wu
Affiliation:
Department of Otolaryngology–Head and Neck Surgery, Quanzhou First Hospital Affiliated to Fujian Medical University, An Ji Road, Feng Ze District, Quanzhou 362000, Fujian Province, P.R. China
Zhong-Zhu Nian
Affiliation:
Department of Otolaryngology–Head and Neck Surgery, Quanzhou First Hospital Affiliated to Fujian Medical University, An Ji Road, Feng Ze District, Quanzhou 362000, Fujian Province, P.R. China
Wen Lin
Affiliation:
Department of Otolaryngology–Head and Neck Surgery, Quanzhou First Hospital Affiliated to Fujian Medical University, An Ji Road, Feng Ze District, Quanzhou 362000, Fujian Province, P.R. China
Xiao-Dong Zhang*
Affiliation:
Department of Otolaryngology–Head and Neck Surgery, Quanzhou First Hospital Affiliated to Fujian Medical University, An Ji Road, Feng Ze District, Quanzhou 362000, Fujian Province, P.R. China
*
Corresponding author: Xiao-Dong Zhang; Email: happy_zxd123@163.com

Abstract

Objectives

This research aimed to print realistically detailed and magnified three-dimensional models of the inner ear, specifically focusing on visualising its complex labyrinth structure and functioning simulation.

Methods

Temporal bone computed-tomography data were imported into Mimics software to construct an initial three-dimensional inner-ear model. Subsequently, the model was amplified and printed with precision using a three-dimensional printer. Five senior attending physicians evaluated the printed model using a Likert scale to gauge its morphological accuracy, clinical applicability and anatomical teaching value.

Results

The printed inner-ear model effectively demonstrated the intricate internal structure. All five physicians agreed that the model closely resembled the real inner ear in shape and structure, and simulated certain inner-ear functions. The model was considered highly valuable for understanding anatomical structure and disorders.

Conclusion

The three-dimensionally printed inner-ear model is highly simulated and provides a valuable visual tool for studying inner-ear anatomy and clinical teaching, benefiting otologists.

Type
Main Article
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press on behalf of J.L.O. (1984) LIMITED

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Xiao-Dong Zhang takes responsibility for the integrity of the content of the paper

References

Gnanasegaram, JJ, Leung, R, Beyea, JA. Evaluating the effectiveness of learning ear anatomy using holographic models. J Otolaryngol Head Neck Surg 2020;49:63.CrossRefGoogle ScholarPubMed
Chae, R, Sharon, JD, Kournoutas, I, Ovunc, SS, Wang, M, Abla, AA et al. Replicating skull base anatomy with 3D technologies: a comparative study using 3D-scanned and 3D-printed models of the temporal bone. Otol Neurotol 2020;41:e392e403.CrossRefGoogle ScholarPubMed
Gupta, N, Fitzgerald, CM, Ahmed, MT, Tohidi, S, Winkler, M. Feasibility of a 3D printed nasal model for resident teaching in rhinoplasty. J Plast Reconstr Aesthet Surg 2021;74:2776–820.CrossRefGoogle ScholarPubMed
McMillan, A, Kocharyan, A, Dekker, SE, Kikano, EG, Garg, A, Huang, VW et al. Comparison of materials used for 3D-printing temporal bone models to simulate surgical dissection. Ann Otol Rhinol Laryngol 2020:129:1168–73.CrossRefGoogle ScholarPubMed
Mowry, SE, Jabbour, N, Rose, AS, Wiet, GJ, Svrakic, M, Zopf, DA et al. Multi-institutional comparison of temporal bone models: a collaboration of the AAO-HNSF 3D-Printed Temporal Bone Working Group. Otolaryngol Head Neck Surg 2021;164:1077–84.CrossRefGoogle ScholarPubMed
Senkoylu, A, Daldal, I, Cetinkaya, M. 3D printing and spine surgery. J Orthop Surg (Hong Kong) 2020;28:2309499020927081.CrossRefGoogle ScholarPubMed
Vaz, VM, Kumar, L. 3D printing as a promising tool in personalized medicine. AAPS PharmSciTech 2021;22:49.CrossRefGoogle ScholarPubMed
Kuru, I, Maier, H, Müller, M, Lenarz, T, Lueth, TC. A 3D-printed functioning anatomical human middle ear model. Hear Res 2016;340:204–13.CrossRefGoogle ScholarPubMed
Zhang, XD, Li, ZH, Wu, ZS, Lin, W, Lin, WJ, Lin, JC. A novel three-dimensional-printed paranasal sinus–skull base anatomical model. Eur Arch Otorhinolaryngol 2018;275:2045–9.CrossRefGoogle ScholarPubMed
Favier, V, Najaf, Y, Damecourt, A, Subsol, G, Captier, G, Boetto, J et al. Three-dimensional printing to compare endoscopic endonasal surgical approaches: a technical note. Clin Otolaryngol 2021;46:106–9.CrossRefGoogle ScholarPubMed