Hostname: page-component-848d4c4894-x5gtn Total loading time: 0 Render date: 2024-06-02T19:36:26.584Z Has data issue: false hasContentIssue false

The delayed degradation mechanism and mechanical properties of β-TCP filler in poly(lactide-co-glycolide)/beta-tricalcium phosphate composite suture anchors during short-time degradation in vivo

Published online by Cambridge University Press:  12 November 2018

You-Ran Luo
Affiliation:
State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
Li Zhang
Affiliation:
State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
Cheng Chen
Affiliation:
State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
Dong-Yuan Sun
Affiliation:
State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
Peng Wu
Affiliation:
State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
Yue Wang
Affiliation:
State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
Yun-Mao Liao
Affiliation:
State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041, China
Xiao-Yan Cao
Affiliation:
Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing 100191, China
Cheng-Kung Cheng
Affiliation:
Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing 100191, China
Zi-Qing Tang*
Affiliation:
State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
Xing Liang*
Affiliation:
State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
*
a)Address all correspondence to these authors. e-mail: lyr3195@hotmail.com
Get access

Abstract

The aim of this study was to investigate the in vivo degradation mechanism and the mechanical properties of poly(lactide-co-glycolide)/beta-tricalcium phosphate (PLGA/β-TCP) composite anchors. Anchors composed of PLGA and β-TCP were implanted in the dorsal subcutaneous tissue of beagle dogs for 6, 12, 16, and 26 weeks. The degradation of the materials was evaluated by measuring the changes in thermal behavior, crystallinity, and mechanical properties. Scanning electron microscope (SEM) was used to observe the surface and longitudinal section of the material. The evaluation of mechanical strength retention and degradation properties suggest that the addition of β-TCP particles efficiently enhances their mechanical properties and thermal characteristics and delays their degradation rate. By analyzing the results of SEM, X-ray diffraction, and differential scanning calorimetry, we can infer that after 12 weeks, the connection between β-TCP and PLGA becomes less compact, which accelerates the decline of mechanical strength.

Type
Article
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

c)

These authors contributed equally to this work.

References

REFERENCES

Dejong, E.S., DeBerardino, T.M., Brooks, D.E., and Judson, K.: In vivo comparison of a metal versus a biodegradable suture anchor. Arthroscopy 20, 511 (2004).CrossRefGoogle ScholarPubMed
Barber, F.A. and Hrnack, S.A.: Poly L-lactide co-glycolide/beta-tricalcium phosphate interference screw fixation for bone-patellar tendon bone anterior cruciate ligament reconstruction. J. Knee Surg. 26, 423 (2013).Google ScholarPubMed
Gunja, N.J. and Athanasiou, K.A.: Biodegradable materials in arthroscopy. Sports Med. Arthrosc. Rev. 14, 112 (2006).CrossRefGoogle ScholarPubMed
Moncal, K., Heo, D., Godzik, K., Sosnoski, D., Mrowczynski, O., Rizk, E., Ozbolat, V., Tucker, S., Gerhard, E., Dey, M., Lewis, G., Yang, J., and Ozbolat, I.: 3D printing of poly(ε-caprolactone)/poly(D,L-lactide-co-glycolide)/hydroxyapatite composite constructs for bone tissue engineering. J. Mater. Res. 14, 1972 (2018).CrossRefGoogle Scholar
Ehrenfried, L.M., Patel, M.H., and Cameron, R.E.: The effect of tri-calcium phosphate (TCP) addition on the degradation of polylactide-co-glycolide (PLGA). J. Mater. Sci. Mater. Med. 19, 459 (2008).CrossRefGoogle Scholar
Bostman, O., Hirvensalo, E., Makinen, J., and Rokkanen, P.: Foreign-body reactions to fracture fixation implants of biodegradable synthetic polymers. J. Bone Joint Surg. 72, 592 (1990).CrossRefGoogle ScholarPubMed
Rokkanen, P.U., Bostman, O., Hirvensalo, E., Makela, E.A., Partio, E.K., Patiala, H., Vainionpaa, S.I., Vihtonen, K., and Tormala, P.: Bioabsorbable fixation in orthopaedic surgery and traumatology. Biomaterials 21, 2607 (2000).CrossRefGoogle ScholarPubMed
Weiler, A., Helling, H.J., Kirch, U., Zirbes, T.K., and Rehm, K.E.: Foreign-body reaction and the course of osteolysis after polyglycolide implants for fracture fixation: Experimental study in sheep. J. Bone Joint Surg. 78, 369 (1996).CrossRefGoogle Scholar
Mastrokalos, D.S. and Paessler, H.H.: Allergic reaction to biodegradable interference poly-L-lactic acid screws after anterior cruciate ligament reconstruction with bone-patellar tendon-bone graft. Arthroscopy 24, 732 (2008).CrossRefGoogle ScholarPubMed
Kwak, J.H., Sim, J.A., Kim, S.H., Lee, K.C., and Lee, B.K.: Delayed intra-articular inflammatory reaction due to poly-L-lactide bioabsorbable interference screw used in anterior cruciate ligament reconstruction. Arthroscopy 24, 243 (2008).CrossRefGoogle ScholarPubMed
Taylor, M.S., Daniels, A.U., Andriano, K.P., and Heller, J.: Six bioabsorbable polymers: In vitro acute toxicity of accumulated degradation products. J. Appl. Biomater. 5, 151 (1994).CrossRefGoogle ScholarPubMed
Tecklenburg, K., Burkart, P., Hoser, C., Rieger, M., and Fink, C.: Prospective evaluation of patellar tendon graft fixation in anterior cruciate ligament reconstruction comparing composite bioabsorbable and allograft interference screws. Arthroscopy 22, 993 (2006).CrossRefGoogle ScholarPubMed
Ruhe, P.Q., Hedberg, E.L., Padron, N.T., Spauwen, P.H., Jansen, J.A., and Mikos, A.G.: Biocompatibility and degradation of poly(D,L-lactic-co-glycolic acid)/calcium phosphate cement composites. J. Biomed. Mater. Res., Part A 74, 533 (2005).CrossRefGoogle Scholar
Martinek, V., Seil, R., Lattermann, C., Watkins, S.C., and Fu, F.H.: The fate of the poly-L-lactic acid interference screw after anterior cruciate ligament reconstruction. Arthroscopy 17, 73 (2001).CrossRefGoogle ScholarPubMed
Barber, F.A., Spenciner, D.B., Bhattacharyya, S., and Miller, L.E.: Biocomposite implants composed of poly(lactide-co-glycolide)/beta-tricalcium phosphate: Systematic review of imaging, complication, and performance outcomes. Arthroscopy 33, 683 (2017).CrossRefGoogle ScholarPubMed
Bach, F.D., Carlier, R.Y., Elis, J.B., Mompoint, D.M., Feydy, A., Judet, O., Beaufils, P., and Vallee, C.: Anterior cruciate ligament reconstruction with bioabsorbable polyglycolic acid interference screws: MR imaging follow-up. Radiology 225, 541 (2002).CrossRefGoogle ScholarPubMed
Ticker, J.B., Lippe, R.J., Barkin, D.E., and Carroll, M.P.: Infected suture anchors in the shoulder. Arthroscopy 12, 613 (1996).CrossRefGoogle Scholar
Frosch, K.H., Sawallich, T., Schutze, G., Losch, A., Walde, T., Balcarek, P., Konietschke, F., and Sturmer, K.M.: Magnetic resonance imaging analysis of the bioabsorbable Milagro interference screw for graft fixation in anterior cruciate ligament reconstruction. Strategies Trauma Limb Reconstr. 4, 73 (2009).CrossRefGoogle ScholarPubMed
Lin, L., Wang, T., Zhou, Q., and Qian, N.: The effects of different amounts of drug microspheres on the vivo and vitro performance of the PLGA/beta-TCP scaffold. Des. Monomers Polym. 20, 351 (2017).CrossRefGoogle ScholarPubMed
Tracy, M.A., Ward, K.L., Firouzabadian, L., Wang, Y., Dong, N., Qian, R., and Zhang, Y.: Factors affecting the degradation rate of poly(lactide-co-glycolide) microspheres in vivo and in vitro. Biomaterials 20, 1057 (1999).CrossRefGoogle ScholarPubMed
Nieminen, T., Rantala, I., Hiidenheimo, I., Keranen, J., Kainulainen, H., Wuolijoki, E., and Kallela, I.: Degradative and mechanical properties of a novel resorbable plating system during a 3-year follow-up in vivo and in vitro. J. Mater. Sci. Mater. Med. 19, 1155 (2008).CrossRefGoogle ScholarPubMed
Jensen, S.S., Bornstein, M.M., Dard, M., Bosshardt, D.D., and Buser, D.: Comparative study of biphasic calcium phosphates with different HA/TCP ratios in mandibular bone defects. A long-term histomorphometric study in minipigs. J. Biomed. Mater. Res., Part B 90, 171 (2009).Google ScholarPubMed
Jensen, S.S., Yeo, A., Dard, M., Hunziker, E., Schenk, R., and Buser, D.: Evaluation of a novel biphasic calcium phosphate in standardized bone defects: A histologic and histomorphometric study in the mandibles of minipigs. Clin. Oral Implants Res. 18, 752 (2007).CrossRefGoogle ScholarPubMed
Nandi, S.K., Fielding, G., Banerjee, D., Bandyopadhyay, A., and Bose, S.: 3D-printed β-TCP bone tissue engineering scaffolds: Effects of chemistry on in vivo biological properties in a rabbit tibia model. J. Mater. Res. 14, 1939 (2018).CrossRefGoogle Scholar
Obadal, M., Čermák, R., Raab, M., Verney, V., Commereuc, S., and Fraïsse, F.: Structure evolution of α- and β-polypropylenes upon UV irradiation: A multiscale comparison. Polym. Degrad. Stab. 88, 532 (2005).CrossRefGoogle Scholar
Therin, M., Christel, P., Li, S., Garreau, H., and Vert, M.: In vivo degradation of massive poly(alpha-hydroxy acids): Validation of in vitro findings. Biomaterials 13, 594 (1992).CrossRefGoogle ScholarPubMed
Lin, F.H., Chen, T.M., Lin, C.P., and Lee, C.J.: The merit of sintered PDLLA/TCP composites in management of bone fracture internal fixation. Artif. Organs 23, 186 (1999).CrossRefGoogle ScholarPubMed
van Blitterswijk, C.A., Hesseling, S.C., Grote, J.J., Koerten, H.K., and de Groot, K.: The biocompatibility of hydroxyapatite ceramic: A study of retrieved human middle ear implants. J. Biomed. Mater. Res. 24, 433 (1990).CrossRefGoogle ScholarPubMed
Velu, R. and Singamneni, S.: Selective laser sintering of polymer biocomposites based on polymethyl methacrylate. J. Mater. Res. 29, 1883 (2014).CrossRefGoogle Scholar
Velu, R., Kamarajan, B., Ananthasubramanian, M., Ngo, T., and Singamneni, S.: Post-process composition and biological responses of laser sintered PMMA and β-TCP composites. J. Mater. Res. 14, 1987 (2018).CrossRefGoogle Scholar