Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-06-08T09:50:20.562Z Has data issue: false hasContentIssue false

Effect of grain shape on environmental embrittlement in Ni3Al tested at elevated temperatures

Published online by Cambridge University Press:  31 January 2011

C. T. Liu
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6115
B. F. Oliver
Affiliation:
Materials Science and Engineering Department, The University of Tennessee, Knoxville, Tennessee 37996-2200
Get access

Abstract

This paper describes the effect of grain shape on environmental embrittlement in boron-doped Ni3Al (24 at. % Al). The alloy showed severe embrittlement when tested at 600 and 760 °C in air. The embrittlement can be alleviated by control of grain shape, and the material with a columnar-grained structure produced by directional levitation zone remelting shows good tensile ductilities when tested in oxidizing environments. The columnar-grained structure with vertical grain boundaries minimizes the normal stress and consequently suppresses nucleation and propagation of cracks along the boundaries.

Type
Articles
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Liu, C.T., White, C., Koch, C. C., and Lee, E. H., Proc. Symp. High-Temperature Materials Chemistry II, edited by Munir, Z. A. and Cubicciotti, D. (The Electrochemical Society Publication, 1983), Vol. 83, p. 32.Google Scholar
2Liu, C. T., White, C.L., and Horton, J.A., Acta Metall. 33, 213–19 (1985).CrossRefGoogle Scholar
3Takasugi, T., George, E.P., Pope, D.P., and Izumi, O., Scripta Metall. 19, 551–56 (1985).CrossRefGoogle Scholar
4Ogura, T., Hanada, S., Masumoto, T., and Izumi, O., Metall. Trans. A 16A, 441–43 (1985).CrossRefGoogle Scholar
5Aoki, K. and Izumi, O., Nippon Kinzoku Gakkaishi 43, 1190 (1979).Google Scholar
6Taub, A. I., Huang, S. C., and Chang, K. M., Metall. Trans. A 15A, 399 (1984).CrossRefGoogle Scholar
7Liu, C. T. and Koch, C. C., Technical Aspects of Critical Materials Used by the Steel Industry, Vol. 11B, National Bureau of Standards, 1983.Google Scholar
8Takasugi, T. and Izumi, O., Acta Metall. 33, 1247–58 (1985).CrossRefGoogle Scholar
9White, C.L., Padgett, R.A., Liu, C.T., and Yalisove, S.M., Scripta Metall. 18, 1417–20 (1984).CrossRefGoogle Scholar
10Liu, C.T., White, C.L., and Lee, E.H., Scripta Metall. 19, 1247–50 (1985).CrossRefGoogle Scholar
11Liu, C. T. and White, C. L., Acta Metall. 35, 643–49 (1987).CrossRefGoogle Scholar
12Taub, A.I., Chang, K.M., and Liu, C.T., Scripta Metall. 20, 1613 (1986).CrossRefGoogle Scholar
13Oliver, B.F., Trans. AIME 227, 960–65 (1963).Google Scholar
14Oliver, B.F., Trans. AIME 230, 1352–57 (1964).Google Scholar
15Bellows, R. S. and Tien, J. K., Scripta Metall. 21, 653656 (1987).CrossRefGoogle Scholar
16Bellows, R. S. and Tien, J. K., Scripta Metall. 21, 16591662 (1987).CrossRefGoogle Scholar
17Watanabe, T., Res. Mechanica 11 (1), 47 (1984).Google Scholar
18Hanada, S., Ogura, T., Watanabe, S., Izumi, O., and Masumoto, T., Acta Metall. 34, 1321 (1986).CrossRefGoogle Scholar
19Watanabe, T., Suppl. Trans. JIM. 27, 73 (1986).Google Scholar
20Liu, C. T. and Sikka, V. K., J. Metals 38 (5), 1921 (1986).Google Scholar
21Liu, C.T., Development of Ni and Ni-Fe Aluminides for Elevated-Temperature Structural Use, MICON 86, ASTM STP 979, ASTM, Philadelphia, PA, 1988, pp. 222–37.Google Scholar
22Koch, C.C., Liu, C.T., and Stoloff, N. S., Proc. MRS Symp. High-Temperature Ordered Intermetallic Alloys, edited by Koch, C. C., Liu, C. T., and Stoloff, N. S. (MRS Publication, 1985), Vol. 39.Google Scholar
23Stoloff, N. S., Koch, C. C., Liu, C. T., and Izumi, O., Proc. MRS Symp. High-Temperature Ordered Intermetallic Alloys (MRS Publication, 1987), Vol. 81.Google Scholar
24Thorton, P. H., Davis, R. G., and Johnson, T. L., Metall. Trans. 1, 207 (1970).CrossRefGoogle Scholar
25Flinn, P. A., Trans. TMS-AIME 218, 145 (1960).Google Scholar
26Davis, R.G. and Stoloff, N.S., Trans. TMS-AIME 233, 714 (1965).Google Scholar
27Grala, E. M., Mechanical Properties of Intermetallic Compounds (John Wiley & Sons, Inc., New York, 1960), p. 358.Google Scholar
28Moskovich, R., J. Mater. Sci. 13, 1901 (1978).CrossRefGoogle Scholar
29Takeyama, M. and Liu, C.T., Acta Metall. 36, 12411249 (1988).CrossRefGoogle Scholar
30Curwick, L. A., Ph.D. Dissertation, University of Minnesota, 1972.Google Scholar
31Liu, C. T. and White, C. L., Proc. MRS Symp. High-Temperature Ordered Intermetallic Alloys, edited by Koch, C. C., Liu, C. T., and Stoloff, N. S. (MRS Publication, 1985), Vol. 39, pp. 365380.Google Scholar
32Weihs, T. P., Zinoviev, V., Viens, D.V., and Schulson, E. M., Acta Metall. 35, 11091118 (1987).CrossRefGoogle Scholar