Hostname: page-component-848d4c4894-4hhp2 Total loading time: 0 Render date: 2024-06-09T19:05:07.264Z Has data issue: false hasContentIssue false

Effects of size and surface on luminescence properties of submicron upconversion NaYF4:Yb,Er particles

Published online by Cambridge University Press:  31 January 2011

Guang Shun Yi*
Affiliation:
Department of Materials Science and Engineering, National University of Singapore, Singapore 119260, Republic of Singapore
Gan Moog Chow*
Affiliation:
Department of Materials Science and Engineering, National University of Singapore, Singapore 119260, Republic of Singapore
*
a) Currently at nanoBright Technologies Pte Ltd., Singapore 609964, Republic of Singapore.
b) Address all correspondence to this author. e-mail: msecgm@nus.edu.sg
Get access

Abstract

Bulk NaYF4:Yb,Er particles (∼1.4 μm particle size) were synthesized using a hydrothermal method. As-synthesized particles were subsequently ball milled to three average particle sizes, namely, ∼260 nm, 160 nm, and 100 nm. The x-ray diffraction pattern showed an hcp phase for as-synthesized and ball-milled particles with a predominant (100) peak. Room temperature emission spectra showed no size dependent peak shifts or peak broadening. The intensities of both green and red emissions decreased with increasing milling time. Segregation of Er ions was detected on the surfaces of milled particle that reduced the sensitizer-activator transition probability, resulting in decreased emission intensities. The green-to-red emission ratio was correlated to the surface enrichment of Er, which affected the cross-relaxation of luminescence dynamics.

Type
Articles
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1McFarlane, R.A.: High-power visible upconversion laser. Opt. Lett. 16, 1397 (1991).CrossRefGoogle ScholarPubMed
2Miteva, T., Yakutkin, V., Nelles, G., and Baluschev, S.: Annihilation assisted upconverison: All-organic, flexible and transparent multicolour display. New J. Phys. 10, 1 (2008).Google Scholar
3Chivian, J.S., Case, W.E., and Edden, D.D.: The photon avalanche: A new phenomenon in Pr3+-based infrared quantum counters. Appl. Phys. Lett. 35, 125 (1979).CrossRefGoogle Scholar
4Yi, G.S., Lu, H.C., Zhao, S.Y., Yue, G., Yang, W.J., Chen, D.P., and Guo, L.H.: Synthesis, characterization, and biological application of size-controlled nanocrystalline NaYF4:Yb, Er infrared-to-visible up-conversion phosphors. Nano Lett. 4, 2191 (2004).Google Scholar
5Suyver, J.F., Aebischer, A., Biner, D., Gerner, P., Grimm, J., Heer, S., Krämmer, K.W., Reinhard, C., and Güdel, H.U.: Novel materials doped with trivalent lanthanides and transition metal ions showing near-infrared to visible photon upconversion. Opt. Mater. 27, 1111 (2005).Google Scholar
6Powell, R.C.: Physics of Solid-State Laser Materials (Springer-Verlag, New York, 1998).Google Scholar
7Menyuk, N., Dwight, K., and Pinard, F.: NaYF4: Yb,Er—An efficient upconversion phosphor. Appl. Phys. Lett. 21, 159 (1972).Google Scholar
8Liang, L., Wu, H., Hu, H., Wu, M., and Su, Q.: Enhanced blue and green upconversion in hydrothermally synthesized hexagonal NaY1–xYbxF4:Ln3+=Er3+or Tm3+. J. Alloys Compd. 368, 94 (2004).Google Scholar
9Wang, Z., Tao, F., Yao, L., Cai, W., and Li, X.: Selected synthesis of cubic and hexagonal NaYF4 crystal via a complex-assisted hydro-thermal route. J. Cryst. Growth 290, 296 (2006).CrossRefGoogle Scholar
10Yi, G.S. and Chow, G.M.: Synthesis of hexagonal-phase NaYF4:Yb,Er and NaYF4:Yb,Tm nanocrystals with efficient up-conversion fluorescence. Adv. Funct. Mater. 16, 2324 (2006).CrossRefGoogle Scholar
11Liu, G.K., Zhuang, H.Z., and Chen, X.Y.: Restricted phonon relaxation and anomalous thermalization of rare earth ions in nano-crystals. Nano Lett. 2, 535 (2002).Google Scholar
12Liu, G.K., Chen, X.Y., Zhuang, H.Z., Li, S., and Niedbala, R.S.: Confinement of electron-phonon interaction on luminescence dynamics in nanophosphors of Er3+:Y2O2S. J. Solid State Chem. 171, 123 (2003).CrossRefGoogle Scholar
13Chen, X.Y., Zhuang, H.Z., Liu, G.K., Li, S., and Niedbala, R.S.: Confinement on energy transfer between luminescent centers in nanocrystals. J. Appl. Phys. 94, 5559 (2003).CrossRefGoogle Scholar
14Tamura, A., Higeta, K., and Ichinokawa, T.: Lattice vibrations and specific heat of a small particle. J. Phys. C: Solid State Phys. 15, 4975 (1982).Google Scholar
15Kittel, C.: Introduction to Solid State Physics, 7th ed. (John Wiley & Sons, New York, 1996).Google Scholar
16Meltzer, R.S. and Hong, K.S.: Electron-phonon interactions in insulating nanoparticles: Eu2O3. Phys. Rev. B: Condens. Matter 61, 3396 (2000).CrossRefGoogle Scholar
17Solé, J.G., Bausá, L.E., and Jaque, D.: An Introduction to the Optical Spectroscopy of Inorganic Solids (John Wiley & Sons, New York, 2005).Google Scholar
18Blanchfield, P. and Saunders, G.A.: The elastic constants and acoustic symmetry of LiYF4. J. Phys. C: Solid State Phys. 12, 4673 (1979).Google Scholar
19Miller, S.A., Rast, H.E., and Caspers, H.H.: Lattice vibrations of LiYF4. J. Chem. Phys. 52, 4172 (1970).CrossRefGoogle Scholar
20Weber, M.J.: Radiative and multiphonon relaxation of rare-earth ions in Y2O3. Phys. Rev. 171, 283 (1968).Google Scholar
21Deren, P.J., Mahiou, R., and Goldner, P.: Multiphonon transitions in LaAlO3 doped with rare earth ions. Opt. Mater. 31(3) 465 (2009).Google Scholar
22Suyver, J.F., Grimm, J., Veen, M.K. van, Biner, D., Krämer, K.W., and Güdel, H.U.: Upconversion spectroscopy and properties of NaYF4 doped with Er3+,Tm3+ and/or Yb3+. J. Lumin. 117, 1 (2006).CrossRefGoogle Scholar
23Tsunekawa, S., Ishikawa, K., Li, Z.Q., Kawazoe, Y., and Kasuya, A.: Origin of anomalous lattice expansion in oxide nanoparticles. Phys. Rev. Lett. 85, 3440 (2000).Google Scholar
24Zhou, X.D. and Huebner, W.: Size-induced lattice relaxation in CeO2 nanoparticles. Appl. Phys. Lett. 79, 3512 (2001).CrossRefGoogle Scholar
25Deshpande, S., Patil, S., Kuchibhatla, S.V., and Seal, S.: Size dependency variation in lattice parameter and valency states in nanocrystalline cerium oxide. Appl. Phys. Lett. 87, 133113 (2005).Google Scholar
26Harrison, W.A.: Applied Quantum Mechanics (World Scientific, Singapore, 2000).CrossRefGoogle Scholar
27Ti, C.C., Szabó, I.A., and Beke, D.L.: Size effects in surface segregation. J. Appl. Phys. 83, 3021 (1998).Google Scholar
28Stouwdam, J.W. and Veggel, F.C.J.M. van: Near-infrared emission of redispersible Er3+,Nd3+, and Ho3+ doped LaF3 nanoparticles. Nano Lett. 2, 733 (2002).Google Scholar
29Stouwdam, J.W., Hebbink, G.A., Huskens, J., and Veggel, F.C.J.M. van: Lanthanide-doped nanoparticles with excellent luminescent properties in organic media. Chem. Mater. 15, 4604 (2003).Google Scholar
30Heer, S., Lehmann, O., Haase, M., and Güdel, H-U.: Blue, green, and red upconversion emission from lanthanide-doped LuPO4and YbPO4 nanocrystals in a transparent colloidal solution. Angew. Chem. Int. Ed. 42, 3179 (2003).CrossRefGoogle Scholar
31Bril, A., Sommerdijk, J.L., and Jager, A.W. de: On the efficiency of Yb3+-Er3+ activated up-conversion phosphors. J. Electrochem. Soc. 122, 660 (1975).CrossRefGoogle Scholar
32Klug, H.P. and Alexander, L.E.: X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials, 2nd ed. (John Wiley & Sons, New York, 1974).Google Scholar
33Harrison, W.A.: Electronic structure of f-shell metals. Phys. Rev. B: Condens. Matter 28, 550 (1983).Google Scholar
34Krämer, K.W., Biner, D., Frei, G., Güdel, H.U., Hehlen, M.P., and Lüthi, S.R.: Hexagonal sodium yttrium fluoride based green and blue emitting upconversion phosphors. Chem. Mater. 16, 1244 (2004).CrossRefGoogle Scholar
35Fox, M.: Optical Properties of Solids (Oxford University Press, New York, 2001).Google Scholar
36Williams, D.K., Yuan, H., and Tissue, B.M.: Size dependence of the luminescence spectra and dynamics of Eu3+:Y2O3 nanocrystals. J. Lumin. 83, 297 (1999).Google Scholar
37Watts, J.F. and Wolstenholme, J.: An Introduction to Surface Analysis by XPS & AES (John Wiley & Sons, New York, 2003).Google Scholar
38Suyver, J.F., Grimm, J., Krämmer, K.W., and Güdel, H.U.: Highly efficent near-infrared to visible up-conversion process in NaYF4: Er3+,Yb3+. J. Lumin. 114, 53 (2005).Google Scholar
39Auzel, F.: Upconversion and anti-Stokes processes with f and d ions in solids. Chem. Rev. 104, 139 (2004).CrossRefGoogle Scholar
40Gamelin, D.R. and Güdel, H.U.: Up-conversion processes in transition metal and rare earth metal system. Top. Curr. Chem. 214, 1 (2001).Google Scholar
41Baranov, A.V., Rakovich, Y.P., Donegan, J.F., Perova, T.S., Moore, R.A., Talapin, D.V., Rogach, A.L., Masumoto, Y., and Nabiev, I.: Effect of ZnS shell thickness on the phonon spectra in CdSe quantum dots. Phys. Rev. B: Condens. Matter 68, 165306 (2003).CrossRefGoogle Scholar
42Comas, F. and Trallero-Giner, C.: Interface optical phonons in spherical quantum-dot/quantum-well heterostructures. Phys. Rev. B: Condens. Matter 67, 115301 (2003).Google Scholar
43Hamad, K.S., Roth, R., Rockenberger, J., Buuren, T. van, and Alivisatos, A.P.: Structural disorder in colloidal InAs and CdSe nanocrystals observed by x-ray absorption near-edge spectroscopy. Phys. Rev. Lett. 83, 3474 (1999).Google Scholar
44Alde, M., Johansson, B., and Skriver, H.L.: Surface shift of the occupied and unoccupied 4f levels of the rare-earth metals. Phys. Rev. B: Condens. Matter 51, 5386 (1995).Google Scholar