Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-06-03T00:27:41.824Z Has data issue: false hasContentIssue false

Enhancement of yellow emission and afterglow in Sr3SiO5: Eu2+, Dy3+ by adding alkaline earth metal fluorides

Published online by Cambridge University Press:  20 September 2012

Kai Dong
Affiliation:
Department of Physics & Institute for Nanophysics and Rare-earth Luminescence, Xiangtan University, Xiangtan, Hunan 411105, People’s Republic of China
Junjie Liao
Affiliation:
Department of Physics & Institute for Nanophysics and Rare-earth Luminescence, Xiangtan University, Xiangtan, Hunan 411105, People’s Republic of China
Siguo Xiao*
Affiliation:
Department of Physics, Institute for Nanophysics and Rare-earth Luminescence, and Key Laboratory of Low Dimensional Materials & Application Technology, Xiangtan University, Xiangtan, Hunan 411105, People’s Republic of China
Xiaoliang Yang
Affiliation:
Department of Physics, Institute for Nanophysics and Rare-earth Luminescence, and Key Laboratory of Low Dimensional Materials & Application Technology, Xiangtan University, Xiangtan, Hunan 411105, People’s Republic of China
Jian Wen Ding
Affiliation:
Department of Physics, Institute for Nanophysics and Rare-earth Luminescence, and Key Laboratory of Low Dimensional Materials & Application Technology, Xiangtan University, Xiangtan, Hunan 411105, People’s Republic of China
*
a)Address all correspondence to this author. e-mail: xiaosiguo@xtu.edu.cn
Get access

Abstract

Yellow-emitting long afterglow phosphors Sr3−xSiO5, xMF2: Eu2+, Dy3+ (0 ≤ x ≤ 0.15, M: Ba, Sr, Ca) have been prepared by high-temperature solid-state reaction method followed with rapid cooling process. Photoluminescence measurement reveals that the main emission of the phosphors locates at 575 nm, corresponding to the 4f65d1–4f7 transition of Eu2+. The introduction of alkaline earth metal fluoride effectively enhances the luminescence intensity and prolongs the afterglow time. Especially, the afterglow of the Sr2.95SiO5, 0.05BaF2: Eu2+, Dy3+ phosphor can last for 12 h. Thermal luminescence measurement shows that the trap density of Sr3SiO5: Eu2+, Dy3+ phosphor can be adjusted by adding different alkaline earth metal fluorides, which offers a feasible way to improve the afterglow properties of silicate phosphors.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Blasse, G. and Grabmaier, B.C.: Luminescent Materials (Springer-Verlag, Berlin Heidelberg, 1994).CrossRefGoogle Scholar
Jia, W., Yuan, H., Holmstrom, S., Liu, H., and Yen, W.M.: Photo-stimulated luminescence in SrAl2O4: Eu2+, Dy3+ single crystal fibers. J. Lumin. 8384, 465 (1999).CrossRefGoogle Scholar
Teng, X.M., Zhuang, W.D., Hu, Y.H., Zhao, C.L., He, H.Q., and Huang, X.W.: Effect of flux on the properties of CaAl2O4: Eu2+, Nd3+ long afterglow phosphor. J. Alloys Compd. 458, 446 (2008).CrossRefGoogle Scholar
Chen, Y., Liu, B., Kirm, M., Qi, Z., True, M., Vielhaver, S., and Zimmerer, G.: Luminescent properties of blue-emitting long afterglow phosphors Sr2−xCaxMgSi2O7:Eu2+, Dy3+ (x = 0, 1). J. Lumin. 118, 70 (2006).CrossRefGoogle Scholar
Kim, J.S., Jeon, P.E., and Park, H.L.: Emission color variation of M2SiO4: Eu2+ (M = Ba, Sr, Ca) phosphors for light-emitting diode. Solid State Commun. 133, 187 (2005).CrossRefGoogle Scholar
Huang, Y.L., Cho, N.J., Jang, K.W., and Jiang, C.F.: A blue luminescence glass-ceramics of Eu2+ ions activated Li2O-BaO-B2O3. J. Rare Earths 26, 490 (2008).CrossRefGoogle Scholar
Li, Y.Q., Wang, Y.H, Xu, X.H., and Gong, Y.: Effects of non-stoichiometry on crystallinity, photoluminescence and afterglow properties of Sr2MgSi2O7:Eu2+, Dy3+ phosphors. J. Lumin. 129, 1230 (2009).CrossRefGoogle Scholar
Sun, X.Y., Zhang, J.H., Luo, Y.S., and Wang, X.J.: Long lasting yellow phosphorescence in Sr3SiO5: Eu2+ and Sr3SiO5: Eu2+, Dy3+ phosphors. Chin. J. Lumin. 29, 0665 (2008).Google Scholar
Hsu, W.H., Sheng, M.H., and Tsai, M.S.: Preparation of Eu-activated strontium orthosilicate (Sr1.95SiO4:Eu0.05) phosphor by a sol–gel method and its luminescent properties. J. Alloys Compd. 467, 491 (2009).CrossRefGoogle Scholar
Nakamura, Y., Watari, T., Torikai, T., and Yada, M: Synthesis and luminescence properties of Eu2+-activated Sr3SiO5 phosphors. Mater. Sci. Eng. 18, 102007 (2011).Google Scholar
Cheng, G., Liu, Q.S., Cheng, L.Q., Lu, L.P., and Qiu, G.M.: Synthesis and luminescence property of Sr3SiO5: Eu2+ phosphors for white LED. J. Rare Earths 28, 526 (2010).CrossRefGoogle Scholar
Lakshminarasimhan, N. and Varadarajtt, U.V.: Luminescence and afterglow in Sr2SiO4: Eu2+, RE3+ [RE = Ce, Nd, Sm and Dy] phosphors—Role of co-dopants in search for afterglow. Mater. Res. Bull. 43, 2946 (2008).CrossRefGoogle Scholar
Pollet, M., Marinel, S., and Roulland, F.: High decrease in CaZrO3 sintering temperature using complex fluoride fluxes. J. Eur. Ceram. Soc. 25, 2773 (2005).CrossRefGoogle Scholar
Lee, S.H., Koo, H.Y., Jung, D.S., Han, J.M., and Kang, Y.C.: Effects of BaF2 flux on the properties of yellow-light-emitting terbium aluminum garnet phosphor powders prepared by spray pyrolysis. Opt. Mater. 31, 870 (2009).CrossRefGoogle Scholar
Yamada, Y., Niiori, Y., Hirabayashi, I., and Tanaka, S.: Liquid phase epitaxy of crystalline REBa2Cu3O6+δ films on reactive substrates using the BaF2–-BaO–-CuO flux. Physica C 278, 180 (1997).CrossRefGoogle Scholar
Dai, P.P., Zhang, X.T., Sun, P.P., and Liu, Y.L.: Influence of flux on morphology and luminescence properties of phosphors: A case study on Y1. 55Ti2O7: 0.45Eu3+. J. Am. Ceram. Soc. 95, 1447 (2012).CrossRefGoogle Scholar
Jee, S.D., Park, J.K., and Lee, S.H.: Photoluminescence properties of Eu2+-activated Sr3SiO5 phosphors. J. Mater. Sci. 41, 3139 (2006).CrossRefGoogle Scholar
Yamamoto, H. and Matsuzawa, T.: Mechanism of long phosphorescence of SrAl2O4: Eu2+, Dy3+ and CaAl2O4: Eu2+, Nd3+. J. Lumin. 72, 287 (1997).CrossRefGoogle Scholar
Nguyen, H.D., Yeo, I.H., and Mho, S.I.: Identification of two luminescence sites of SrSiO: Eu and (Sr, Ba)SiO: Eu phosphors. ECS Trans. 28, 167 (2010).CrossRefGoogle Scholar
Chen, L.T., Hwang, C.S., Sun, I-L., and Chen, I.G.: Luminescence and chromaticity of alkaline earth aluminate MxSr1−xAl2O4:Eu2+ (M: Ca, Ba). J. Lumin. 118, 12 (2006).CrossRefGoogle Scholar
Kuang, J.Y. and Liu, Y.L.: White-emitting long-lasting phosphor Sr2SiO4: Dy3+. Chem. Lett. 34, 598 (2005).CrossRefGoogle Scholar
Li, C.Y, Wang, J., Liang, H.B., and Su, Q.: Near infrared long lasting emission of Yb3+ and its influence on the optical storage ability of Mn2+-activated zinc borosilicate glasses. J. Appl. Phys. 101, 3304 (2007).CrossRefGoogle Scholar
Yamaga, M., Masui, Y., Sakuta, S., Kodamaand, N., and Kaminaga, K.: Radiative and nonradiative decay processes responsible for long-lasting phosphorescence of Eu2+-doped barium silicates. Phys. Rev. B 71, 205102 (2005).CrossRefGoogle Scholar
Huang, P., Cui, C.E., and Wang, S.: Condensed matter: Electronic structure, magnetic and optical properties: Synthesis and characterization of Sr3Al2O6:Eu2+, Dy3+ phosphors prepared by sol-gel-combustion processing. Chin. Phys. B 18, 4524 (2009).Google Scholar
Lin, Y.H., Dang, Z.M., Deng, Y., and Nan, C.W.: Studies on mechanoluminescence from SrAl2O4: Eu, Dy phosphor. Mater. Chem. Phys. 80, 20 (2003).CrossRefGoogle Scholar
Sun, X.Y., Zhang, J.H., and Wang, X.J.: Effect of retrapping on photostimulated luminescence in Sr3SiO5: Eu2+, Dy3+ phosphor. J. Appl. Phys. 105, 013501 (2009).CrossRefGoogle Scholar
Sun, X., Zhang, J., Zhang, X., Luo, Y., and Wang, X.: Long lasting yellow phosphorescence and photostimulated luminescence in Sr3SiO5: Eu2+ and Sr3SiO5: Eu2+, Dy3+ phosphors. J. Phys. D: Appl. Phys. 41, 195414 (2008).CrossRefGoogle Scholar