Hostname: page-component-848d4c4894-p2v8j Total loading time: 0 Render date: 2024-06-09T01:35:10.512Z Has data issue: false hasContentIssue false

Environmental effects on luminescence yield of superconducting YBa2Cu3Ox

Published online by Cambridge University Press:  31 January 2011

M. S. Jahan
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico 87545
D. W. Cooke
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico 87545
H. Sheinberg
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico 87545
J. L. Smith
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico 87545
D. P. Lianos
Affiliation:
W.J. Schafer Associates, Inc., Huntsville, Alabama 35868
Get access

Abstract

Gamma-ray-induced surface defects in YBa2Cu3Ox (x ≈ 7) have been investigated by thermally stimulated luminescence (TSL) following storage of the samples in dry (vacuum), oxygen, and 98% relative humidity environments. Irradiation of samples stored in either vacuum or oxygen environments shows that no insulating chemical species are formed on the surface of the superconductor. In contrast, exposure to the humid environment produces various chemical components on the surface, and, consequently, enhances the TSL yield. Comparison of the YBa2Cu3Ox, TSL glow curve and emission spectra with those of BaCO3 suggests that one of the components contributing to the purported YBa2Cu3Ox luminescence is BaCO3. Evidence for formation of other chemical species and the suitability of the TSL technique for their determination are discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Cava, R. J., Santoro, A., Johnson, D. W., and Rhodes, W. W., Phys. Rev. B 35, 6716 (1987).CrossRefGoogle Scholar
2Geiser, U., Beno, M. A., Shultz, A.J., Wang, H.H., Allen, T.J., Monathan, M.R., and Williams, J. M., Phys. Rev. B 35, 6721 (1987).CrossRefGoogle Scholar
3Gao, Y., Wagner, T. J., Hill, D. M., Meyer, H. M. III , Weaver, J. H., Arko, A. J., Flandermyer, B.K., and Capone, D.W. II , in Chemistry of High Temperature Superconductors, edited by Nelson, D. L., Whittingham, M. S., and George, T. F. (American Chemical Society, Washington, DC, 1987), p. 212.CrossRefGoogle Scholar
4Robinson, A.L., Science 236, 1063 (1987).CrossRefGoogle ScholarPubMed
5Bansal, N.P. and Sandkuhl, A. L., Appl. Phys. Lett. 52, 323 (1988).CrossRefGoogle Scholar
6Garland, M. M., J. Mater. Res. 5, 830 (1988).CrossRefGoogle Scholar
7Cooke, D. W., Rempp, H., Fisk, Z., Smith, J. L., and Jahan, M. S., Phys. Rev. B 36, 2287 (1987).CrossRefGoogle Scholar
8Cooke, D.W., Rempp, H., Fisk, Z., Smith, J.L., and Jahan, M.S., J. Mater. Res. 2, 871 (1987).CrossRefGoogle Scholar
9Yan, M.F., Barns, R. L., O'Bryan, H.M. Jr , Gallagher, P. K., Sherwood, R. C., and Jin, S., Appl. Phys. Lett. 51, 1373 (1987).CrossRefGoogle Scholar
10Barns, R.L. and Laudise, R. A., Appl. Phys. Lett. 51, 532 (1987).CrossRefGoogle Scholar
11Cooke, D. W., Jahan, M. S., Smith, J. L., Maez, M. A., Hults, W. L., Raistrick, I. D., Peterson, D.E., O'Rourke, J.A., Richardson, S. A., Doss, J. D., Gray, E. R., Rusnak, B., Lawrence, G.P., and Fortgang, C.. Preprint.Google Scholar